Manual

## Gladiator <br> Admittance Smart Switch Series

An All-round Point Level Switch


For more information, please visit >
www.hawkmeasure.com

## Table of Contents

## Contents

Overview ..... 3
Principle of Operation ..... 3
Typical Uses ..... 3
Primary Areas of Application ..... 3
Features ..... 3
Function ..... 3
Typical Applications ..... 4
Cyclone Bin Level Switch ..... 4
Presence / Absence of Liquid In Pipe Detection ..... 4
Typical Applications ..... 5
High and Low-level Switch In A Hopper ..... 5
Dimensions ..... 6
Remote Amplifier ..... 6
Optional Flange ..... 6
Pump Protection Probe ..... 6
Sealing Cover ..... 6
Remote Probe ..... 7
Integral Probe ..... 7
Flexible Cable Probe ..... 8
High Temperature Probe ( $<250^{\circ} \mathrm{C}$, $<482^{\circ} \mathrm{F}$ ) ..... 9
High Temperature Extensions ( $<250^{\circ} \mathrm{C}, 482^{\circ} \mathrm{F}$ ) ..... 9
High Temperature Probe $\left(450^{\circ} \mathrm{C}, 842^{\circ} \mathrm{F}\right)$ ..... 9
Mounting ..... 10
Mounting Examples ..... 11
Mounting ..... 11
Flexible Cable Probe Adjustment ..... 12
Notes For Adjusting Probe Rope Length ..... 12

## PROPRIETARY NOTICE

The information contained in this publication is derived in part from proprietary and patent data. This information has been prepared for the express purpose of assisting operating and maintenance personnel in the efficient use of the instrument described herein. Publication of this information does not convey any rights to use or reproduce it, or to use for any purpose other than in connection with the installation, operation and maintenance of the equipment described herein.

## WARNING

This instrument contains electronic components that are susceptible to damage by static electricity. Proper handling procedures must be observed during the removal, installation, or handling of internal circuit boards or devices:

## Handling Procedure:

1. Power to unit must be removed prior to commencement of any work.
Wiring ..... 13
Integral Probe Wiring ..... 13
Remote Probe to Amplifier ..... 14
Relay Functions ..... 15
Multidrop Connections ..... 16
Test Terminal Function Selection (SPDT Only) ..... 17
Setup Procedure ..... 18
Integral Probe Functionality Layout ..... 18
Integral Probe Version ..... 19
Remote Functionality Layout ..... 21
Remote Version ..... 22
Main Menu \& Interface ..... 23
Remote Main Menus \& Interface - Remote System ..... 23
Software Parameters ..... 24
Operational Diagnostics (Remote Type Only) ..... 24
Quickset Menu ..... 25
Advanced Menu ..... 26
Troubleshooting ..... 32
Remote Version ..... 32
Part Numbering ..... 33
Integral Probe Version ..... 33
Remote Version ..... 34
Pump Protection Version ..... 35
Specifications ..... 36
Dielectric Constants Table ..... 37
2. Personnel must be grounded, via wrist strap or other safe, suitable means, before any printed circuit board or other internal devices are installed, removed or adjusted.
3. Printed circuit boards must be transported in a conductive bag or other conductive container. Boards must not be removed from protective container until the immediate time of installation. Removed boards must be placed immediately in a protective container for transport, storage, or return to factory.

## Comments:

This instrument is not unique in its content of ESD (electrostatic discharge) sensitive components. Most modern electronic designs contain components that utilize metal oxide technology (NMOS, CMOS, etc.). Experience has proven that even small amounts of static electricity can damage or destroy these devices. Damaged components, even though they appear to function properly, exhibit early failure

## Overview

## Principle of Operation

The probe of the Admittance Switch forms one plate of a capacitance circuit, with the vessel wall making the second plate. The dielectric constant of the product between the probe and the vessel wall will cause a change of capacitance as the level approaches the probe. The change is detected, amplified and used to switch a relay for indication or control purposes. A special circuit is used to ignore product build-up between the sensing probe (active element) and guard, and also between the guard and vessel wall.

## Typical Uses

- Failsafe high-level / low-level alarm
- High-level alarm
- Low-level alarm
- Blocked chute / Plugged chute
- Interface detection
- Pump control.


## Primary Areas of Application

| - Asphalt • Glass | • Plastics |
| :--- | :--- |
| - Brewing • Mining \& Metals | • Power Generation |
| - Cement • Oil \& Gas | • Refining |
| - Chemical • Packaging | • Semiconductor |
| - Dairy •Paint | • Sugar |
| - Edible oil • Paper | • Textile |
| - Fertilizer • Pharmaceutical | • Water \& Wastewater. |
| - Food \& Beverage |  |

## Function

The Gladiator Admittance Smart Switch is point level switch for liquids, solids and powders.

The unit is suitable for a broad range of products and dielectric constants up to high temperature of $450^{\circ} \mathrm{C}$ ( $842^{\circ} \mathrm{F}$ ).


## Features

- Excellent immunity to product build-up
- Excellent temperature stability - no false trips
- Non contact switching possible with many products
- Simple '1-minute' setup
- Remote sensor or Integral 'all in one' types
- Relay outputs: Integral probe (1) Remote (2)
- Remote test function
- Adjustable ON and OFF delays (0-20 sec)
- Remote 3G Connection option
- Remote amplifier to probe separation up to 500m (1640ft)
- Bright visual status indication on Probe
- Independent housing alignment after mounting thread locked.


## Typical Applications

Gladiator Admittance Smart Switch Series


Cyclone Bin Level Switch


High level switch in grain application


High level switch in plastic pellet silo
Presence / Absence of Liquid In Pipe Detection

Sealing plug available allowing removal of unit without pipe leakage


## Typical Applications

Gladiator Admittance Smart Switch Series


HAWK

## High and Low-level Switch In A Hopper



If impact from falling material is expected, mount a protection plate above the probe to ensure no physical damage can occur to the probe in normal operation. If it is not possible to do this or to move the probe to an alternative position, use a microwave switch.

See www.hawkmeasure.com for further information on Microwave switches and other level products.

## Dimensions

Gladiator Admittance Smart Switch Series


Remote Amplifier


## Optional Flange



Flange Dimensions - $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$

|  | A |  | B |  | C |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| ANSI (Class 150) | 120.7 | $4.75^{\prime \prime}$ | 152.4 | $6 "$ | 19.1 | $0.75^{\prime \prime}$ |
| DIN (PN40) | 125 | $4.9^{\prime \prime}$ | 165 | $6.5^{\prime \prime}$ | 18 | $0.7^{\prime \prime}$ |
| JIS (10K) | 120 | $4.7^{\prime \prime}$ | 155 | $6.1^{\prime \prime}$ | 19 | $0.75^{\prime \prime}$ |

Pump Protection Probe
$\qquad$ Sealing Cover


## Dimensions

Gladiator Admittance Smart Switch Series

## Remote Probe



## Integral Probe



| Probe Length (mm, inch) | Active | + Guard + Ground |
| :--- | :--- | :--- |
| P05 $\left(50 \mathrm{~mm}, 2^{\prime \prime}\right)$ | $=15 \mathrm{~mm}, 0.6^{\prime \prime}$ | $+35 \mathrm{~mm}, 1.4^{\prime \prime}$ |
| P30 $\left(300 \mathrm{~mm}, 11.8^{\prime \prime}\right)$ | $=50 \mathrm{~mm}, 2^{\prime \prime}$ | $+250 \mathrm{~mm}, 9.8^{\prime \prime}$ |
| P50 $\left(500 \mathrm{~mm}, 19.7^{\prime \prime}\right)$ | $=250 \mathrm{~mm}, 9.8^{\prime \prime}$ | $+250 \mathrm{~mm}, 9.8^{\prime \prime}$ |
| P100 $\left(1000 \mathrm{~mm}, 39.4^{\prime \prime}\right)$ | $=750 \mathrm{~mm}, 29.5^{\prime \prime}$ | $+250 \mathrm{~mm}, 9.8^{\prime \prime}$ |

## Dimensions

Gladiator Admittance Smart Switch Series


Flexible Cable Probe


| Probe Length (mm, inch) | Active | + Guard + Ground | (Rope Length) |
| :--- | :--- | :--- | :--- |
| C100 $\left(1000 \mathrm{~mm}, 39.3^{\prime \prime}\right)$ | $=750 \mathrm{~mm}, 29.5^{\prime \prime}$ | $+250 \mathrm{~mm}, 9.8^{\prime \prime}$ | $451 \mathrm{~mm}, 17.8^{\prime \prime}$ |
| C200 $\left(2000 \mathrm{~mm}, 78.7^{\prime \prime}\right)$ | $=1750 \mathrm{~mm}, 68.9^{\prime \prime}$ | $+250 \mathrm{~mm}, 9.8^{\prime \prime}$ | $1451 \mathrm{~mm}, 57.1^{\prime \prime}$ |
| C300 $\left(3000 \mathrm{~mm}, 118.1^{\prime \prime}\right)$ | $=2750 \mathrm{~mm}, 108.3^{\prime \prime}$ | $+250 \mathrm{~mm}, 9.8^{\prime \prime}$ | $2451 \mathrm{~mm}, 96.5^{\prime \prime}$ |

## Dimensions

High Temperature Probe ( $<250^{\circ} \mathrm{C},<482^{\circ} \mathrm{F}$ )
High Temperature Probe $\left(450^{\circ} \mathrm{C}, 842^{\circ} \mathrm{F}\right)$


## High Temperature Extensions ( $<\mathbf{2 5 0}{ }^{\circ} \mathrm{C}, 482^{\circ} \mathrm{F}$ )

## Remote Probe or Integral Probe

X mm:

- Max. $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right) \sim$ no temperature extension required
- Max. $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right) \sim 150 \mathrm{~mm}\left(5.9^{\prime \prime}\right)$
- Max. $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right) ~ ~ 250 \mathrm{~mm}\left(9.8^{\prime \prime}\right)$
- For the $450^{\circ} \mathrm{C}\left(842^{\circ} \mathrm{F}\right)$ Probe, different extension applies.



## Mounting

Probes can be mounted from the top, side and bottom.

Points to consider when mounting:

## A. Material infeed clearance

Install the probe away from the infeed to minimize the influence of build-up and impact forces, and to avoid false triggering from product flow.

## B. Wall clearance

Install the probe far enough away from the wall to prevent the probe or cable from coming into contact with the vessel wall. Avoid creating a confined area where material could build-up over time.
See note (2)

## C. Nozzle clearance

Where possible, ensure the probe guard has at least 100 mm clearance from the nozzle.


## D. Top mounting

When top mounting, ensure adequate clearance is provided between probe and wall. Avoid creating a confined area where material could build-up over time. In the case of cable probe versions, ensure enough clearance is provided between the probe and wall to allow for build-up of material occurring on the wall.
See note (2)

## E. Side mounting

It is highly recommended to install any side mounted probe at a downward angle of $30-45^{\circ}$. Use a protection plate for side mounting where the probe may be subject to impact strain or collapsing material.

## F. Bottom mounting

Bottom mounting is not recommended. Only mount from the bottom if no build-up of material occurs. If low level mounting is required, suitable options are shown in the diagram on page 11.

## CORRECT MOUNTING NOTES:

(Refer to picture on page 11)
(1) Select correct probe for high temperature applications.

Allow adequate air flow for cooling extensions dissipate heat.

## INCORRECT MOUNTING NOTES:

(2) Incorrect mounting because the probe is too close to the wall or roof. Positioning too close to a wall or roof will limit probe sensitivity. Material may build-up between the probe and the vessel.
(3) Incorrect mounting because the probe's guard is mounted inside the nozzle. The correct arrangement is for the guard to protrude out of the mounting pipe at least 100 mm . Product will build- up in the nozzle.

## Mounting Examples

Gladiator Admittance Smart Switch Series


## Mounting



Housing can be rotated within $200^{\circ}$ after the mounting thread is tightened, to allow cable entries to face downwards or allow optimal cable clearance.


Correct (non-preferred low level mounting)

## Notes For Adjusting Probe Rope Length

The Gladiator rope type probe can be altered to any sensing length between approx. 750 mm and 3 m by cutting down from the standard sizes as required.
If a new rope is to be used, the rope should be cut to:
Cable probe length $-549 \mathrm{~mm}=$ new wire rope length (total sensing length -549 mm )
For example, within a 1000 mm (1m) cable:
$1000=$ [rope +549$]$
So rope length $=451 \mathrm{~mm}$
Remove or install the probe weight grub screws with a 4 mm Allen key.
When fastening the rope, apply thread-locking adhesive onto grub screws before re-installation.

ovable SS grub screws able adjustment

Integral Probe

（1）
The AC earth／ground cable must be connected to the ground screw inside the housing when using AC power．

Hole for securing of optional identification tag

If only one cable is used for both power and output signal，then the second entry port must be plugged or blinded．Every Smart unit is supplied with two M20 glands（or 3／4＂NPT adaptors） mounted on the unit and one blind plug loose．

Ground the housing to vessel，if vessel is metallic． Ground the housing to plant ground，if vessel is non－metallic．

> Terminal Layout - Output Option S (SPDT)
> Terminal Layout - Output Option D (DPDT)

User pliers to extract terminal blocks

## Wiring

## Remote Probe to Amplifier



## Cable type between Amplifier and Probe

- Cable type between Amplifier and Probe
- 4 conductor shielded twisted pair instrument cable
- Conductor size dependent on cable length
- BELDEN 3084A, DEKORON or equivalent
- Max: BELDEN 3084A = 500m (1640ft)
- Max: DEKORON IED183AA002 = 350m (1150 ft).

Relay Functions

## Level Switch Contact Action

Relay - for Integral Probe Version (Set Relay Action selection switch page 18)

Relay 1 - for Remote Version (Set ‘Relay Action’ parameter pages 25 and 26)
*It is possible for the Gladiator to switch state before actual product contact with the probe. State 2 represents product being detected by the probe, even if it occurs without contact.


FailSafe Switch Contact Action
Relay 2 - Remote version only.
For Integral Probes the Test terminal can act as a solid state output with a similar function. (See page 17)

| POWER FALLURE <br> or <br> INTERNAL FAILUR | $\begin{array}{cc} \hline 0 & 0 \\ \text { нс сом мо } \\ \mathrm{O} \\ \hline \end{array}$ |  |
| :---: | :---: | :---: |
| SYSTEM OPERATING NORMALL | $\begin{array}{cc} 50 \\ \text { nс сом мо } \\ \text { N- } \end{array}$ |  |

## Multidrop Connections

## Multidrop GPRS Connection*



## Multidrop Connection Using HawkLink USB*



## Test Terminal Function Selection (SPDT Only)

## Test input mode

Test switch must be in 'TEST' (ON) position on Integral Probe - function always enabled on Remote Amplifier. Test terminal acts as an input for remote testing of the instrument's switching function. Used to check for malfunction of unit from a remote position, PLC, SCADA etc. For more information see page 20.

TEST INPUT FROM PLC/SCADA/DCS DIGITAL OUTPUT
Terminal Block


PLC/SCADA/DCS GROUND MUST CONNECT BACK TO GLADIATOR GROUND OR DC ‘-’ TERMINALS


FAILSAFE OUTPUT MODE (Test switch must be in the 'OFF' position - default setting)
Test terminal will provide an output which is able to switch an external failsafe relay or PLC/SCADA/DCS input. During normal system operation this terminal will internally switch a solid state (transistor) output to ground (or DC '-'). If power fails or an internal system failure occurs, the terminal will act as an open circuit.

## To switch an external relay



Relay will turn on during normal system operation or off in failed or unpowered conditions.

## To a PLC input



Input will detect '0' state during normal system operation, or ' 1 ' in failed or unpowered conditions.

## Setup Procedure

Gladiator Admittance Smart Switch Series


## Integral Probe Functionality Layout



## Functionality Description (bold is default)

1 Mounting Calibration switch CAL/OFF
(2) Test input function select TEST/OFF
(3) Relay action selection switch
FSH - FailSafe High
FSL - FailSafe Low
(4) $\mathrm{HI} / \mathrm{LO}$ sensitivity switch

5
Delay Potentiometer (0-20 sec)
(Default 0 sec . at minimum position)
(6) Sensitivity Potentiometer Default 50\% = 12 o'clock

7 RED LED: Relay status ON when relay coil is energised

8 GREEN LED: Power / Status Blinks to indicate the functioning is correct and no media is detected. Continuously ON when media is detected.

9
BLUE LED:
Blinking indicates calibration function is on. Continuously ON indicates failed calibration.

10 AC Ground - must be used for AC powered installations
11 Removable terminal block - plug in type
(12) Signal voltage test point

- Not used in Gladiator Admittance products


## Integral Probe Version

1. Mount the unit in its actual position.
(See mounting procedure - pages 10-11)

- Make sure that external ground wire is connected between the outside ground screw on the Gladiator housing and the roof/wall/side of the silo/ tank/vessel/chute (for non metallic tanks make sure that external ground wire is connected between the same outside ground screw on the housing and the general plant ground potential).

2. Check where the actual level is relative to the probe

- Make sure that product is not touching the probe ideally it needs to be $>500 \mathrm{~mm}$ away (if the silo/ vessel/tank/chute is very small you must ensure that the material is as far away as possible - it must not be touching the probe).


## 3. Turn the power on

- The green LED will either stay on for 2 seconds then begin flashing or stay on permanently to indicate operation.


## 4. Select the required relay contact action

- The Relay can switch 'ON' or 'OFF' as the product approaches the probe and switch 'ON' or 'OFF' in response to an instrument failure (for details see page 15).
- Set the relay action selection switch position (FSL or FSH) depending on your requirements.


## 5. Cancel influence of mounting and/or build up

- Do not proceed with this step unless the product is not touching the probe. Ideally the level needs to be $>500 \mathrm{~mm}$ away.
- Switch the Mounting Calibration switch to 'CAL' (ON) position.
- The Blue LED will blink to indicate that mounting calibration is now in progress.
- Wait for at least 10 sec. then switch the mounting calibration switch to 'OFF' position.
- The Blue LED should turn off after a short time.
- The Blue LED will stay on if there was a calibration error.
- If this is the case please check that the probe is not touching the product or the mounting, then try the calibration again.
- If mounting calibration was successful the blue LED should be off and the Green LED should blink every 2 sec .
- Unit is now able to cancel influence of mounting and/or build-up and probe history has been cleared.
- The reverse is also true.


## Integral Probe Version

## 6. Select the sensitivity

There are two adjustments controlling the sensitivity of the switch point:
6.1. The 'HI/LO' sensitivity switch is used to set your unit depending on the dielectric properties of the product to be measured. This switch sets the range of adjustment possible with the sensitivity potentiometer.

- If the material to be detected has a lower dielectric constant than 10 - set the switch
to 'HI' (ON)-default.
- If material to be detected has a higher dielectric constant than 10 - set switch to 'LO'.
- If you are not aware of your material dielectric constant - set the switch to 'HI' (ON) - default.


### 6.2 The sensitivity potentiometer

- Set the potentiometer according to your requirements
- A 12 o'clock setting (50\%) - default, will cover the majority of instances - for the remaining instances, turning the potentiometer anti clockwise will decrease sensitivity.
- Switch point will then occur with the material nearer to the probe or more in contact with the probe than before.


## 7. Select the time delay

- Set the required delay using the Delay potentiometer (Default is 0 sec . at minimum position).
- Turn the potentiometer clockwise if any delay is required.
- Maximum rotation is $3 / 4$ of a revolution.
- Max delay is 20 sec.
- The selected delay will be used for both an ON delay and an OFF delay.*


## 8. Test function

## (used to check for malfunction of unit

 from remote position, PLC, SCADA etc)- Select the desired Test function by switching the 'Test' switch (Default = ‘OFF’).
- TEST' (ON) Position:
- Test function is selected.
- Test terminal (terminal number 4 of Integral probe) is used as an input to the unit.
- The test function allows you to check the functionality of the unit.
- Applying a ground wire to the Test terminal will change the state of the relay. It will hold this state until the ground is removed, then it will change back to the standard running mode.
- If the unit was in a Fail mode then the relay will not change status.
- 'OFF' (Default) Position:
- Fail safe output function is selected.
- Test terminal (terminal number 4 of Integral probe) will function as an open drain drive.
- This can be used to drive a relay or an active low PLC input to detect a Fail condition.
- In normal operation mode the Test terminal will output Zero Volts (Short to GND).
- In Fail or unpowered mode the Test terminal will be open circuit.
*Setting of different time ranges for the delay potentiometer for ON delay and OFF delay is possible using a PC connected via GosHawk II software. By default, both will have the same time adjustment range (20 sec max) and adjustment will result in equal ON delay and OFF delay.


## Setup Procedure

Gladiator Admittance Smart Switch Series


## Remote Functionality Layout



8 GREEN LED: Power / Status
Blinks every $1 / 2$ second to indicate that functioning is correct and no medium is detected.
LED on continuously indicates correct functioning and media is detected.
9 Removable terminal block - plug in type

## Remote Version

1. Mount the unit in its actual position.
(See mounting procedure - page 10-11)

- Make sure that external ground wire is connected between the outside ground screw on the Gladiator housing and the roof/wall/side of the silo/tank/ vessel/chute (for non metallic tanks make sure that external ground wire is connected between the same outside ground screw on the housing and the general plant ground potential.).

2. Check where the actual level is relative to the probe.

- Make sure that product is not touching the probe - ideally it needs to be $>500 \mathrm{~mm}$ away (if the silo/ vessel/tank/chute is very small you must ensure that the material is as far away as possible - it must not be touching the probe).


## 3. Turn the power on

- The display will turn on and the failsafe relay will switch.
- The display will scroll through the following messages: Hawk, Amp SerialNo, Type, Amp SoftVer, Device ID, SensorSerial, SensorModel, Sens SoftVer, Sensor Addrs, Gladiator System Amp.
- The unit will then go into operational mode displaying 'Switch' with a \% value. This \% value represents the changing admittance reading.


## 4. Simple "1-minute" Setup - Follow the flow chart



## Main Menu \& Interface

Gladiator Admittance Smart Switch Series

## Remote Main Menus \& Interface - Remote System

Note: Parameters may vary depending on older software revisions


Sensor Value /
Operational Diagnostics

Default unlock
code $=0$

Standard Parameters

Advanced Parameters

CAL

RUN

## $7 \boldsymbol{T}$ Scroll up / down

## Software Parameters

Gladiator Admittance Smart Switch Series

## Operational Diagnostics (Remote Type Only)

The diagnostic displays appear on the top line of the LCD, after pressing the Up or Down push button when the Gladiator is in its normal running mode.

The diagnostics provide the user with valuable performance feedback on how the instrument is performing whilst in operation.

The measured reading Sensor Value (\%) continues to be displayed on the second line of the LCD during diagnostic viewing on the top line. Output relays will continue to operate during diagnostic viewing.

| Diagnostic | Description | Notes |
| :---: | :---: | :---: |
| Sensor Value | Sensor value indicates detected material. 0\% indicates nothing is touching the probe. The peak amount of $\%$ depends on the Display Span setting. | This \% is also used by the Switch Point parameter for relay control. |
| - Normal <br> - Failed | - Unit in normal operation <br> - Unit is in failsafe condition |  |
| Temp | Measured temperature inside probe housing. |  |
| Delay | Dynamic switch delay time indication |  |
| Min | The minimum recorded Sensor Value \% since last log reset |  |
| Max | The maximum recorded Sensor Value \% since last log reset |  |
| SW Off | For the level relay to switch to state '1', the Sensor value must drop below this SW Off $\%$ for the duration of the off delay time. | Switch mode 'Auto' will automatically set the SW Off \% to $1 / 2$ of SW On \% |
| SW On | For the level relay to switch to state '2', the Sensor value must exceed this SW On \% for the duration of the on delay time. |  |

## Software Parameters

Gladiator Admittance Smart Switch Series


## Quickset Menu - Parameters

| Parameter | Description | Options |
| :--- | :--- | :--- |
| App Type | Select pre-configured settings based on Dielectric Constant of <br> the measured material | • Dielectric 0-10 <br> • Dielectric 0-5 <br> • Dielectric 10-50 <br> • Dielectric >50 |
| Cal Mounting | Performs a Cal Mount in which the unit automatically <br> configures itself based on the selected App Type and the <br> mounting environment. Vessel must be empty. | • Yes / No |
| Switch Point | This is the switch on / off sensor value \% for relay actions. In <br> 'Auto' mode (set in Advanced menu) switch off will be default to <br> $1 / 2$ of this value. | • Adjustable |
| On Delay Adj | Set on delay time for relay 1. | • Adjustable in seconds |
| Off Delay Adj | Set off delay time for relay 1. |  |
| Relay1Action | Adjust the Relay action to be energised or <br> de-energised during normal operation | • FailSafe Hi |
| Lock Code | Set a lock code to prevent unauthorised access | • FailSafe Low |

## Software Parameters

Gladiator Admittance Smart Switch Series

## Advanced Menu - Parameters

| Parameter | Description | Sub Menu |
| :---: | :---: | :---: |
| Switch Mode | - Auto - Switch On\% set in Quickset, Switch Off\% automatically configured <br> - Manual - Manually adjust Switch On and Switch Off \% | - Switch On\% <br> - Switch Off\% |
| Relay2Action | Set Relay2Action as one of the below: <br> - Failsafe - Relay2 triggers on failsafe conditions <br> - Relay2 - Mirrors Relay1 action to act as a second / backup relay for the system | - Failsafe <br> - Relay2 |
| View Log | View logged data since last re-set or cal mount | - Min Sensor\% <br> - Max Sensor\% <br> - Min Temp <br> - Max Temp |
| Reset Log | Reset logged data | - Yes <br> - No |
| Comms Type | Adjust \& select additional communications, baud rate and device ID. All GSA units by default include Modbus. | - DeviceNet (not functional) <br> - Profibus (not functional) <br> - HART (not functional) <br> - Modbus / Device ID / Baud Rate |
| Back Light | Turn on / off LCD backlight |  |
| Display Span | Changes the displayed Sensor\% multiplier. This will not adjust any performance based function of the unit, only the digits used to display the Sensor\%. | - Span 0-40000 <br> - Span 1-30000 <br> - Span 2-20000 <br> - Span 3-10000 <br> - Span 4-5000 <br> -Span 5-1000 |
| Probe Avg | Probe Avg is a output damping parameter. Increase to smooth out unwanted fluctuations or instability of Sensor\%. | - Adjustable (default 4) |
| LoadDefaults | Reset system to defaults (amplifier and/or sensor) | $\begin{aligned} & \text { - Yes } \\ & \text { - No } \end{aligned}$ |
| InputVolChk | Used for power related failsafe. When active the unit will switch to failsafe mode if input voltage drops below required power. When not active unit will display 'Input Voltage too low' on the display if input voltage drops below required power. | $\begin{aligned} & \text { - Yes } \\ & \text { - No } \end{aligned}$ |

## Software Flow Chart

Gladiator Admittance Smart Switch Series

## Diagnostics



## Dielect 0-5

QuickSet
App Type
CAL
Dielect 0-10

## Software Flow Chart

Gladiator Admittance Smart Switch Series


## Software Flow Chart

Gladiator Admittance Smart Switch Series


## Software Flow Chart

Gladiator Admittance Smart Switch Series

HAWK


## Software Flow Chart

Gladiator Admittance Smart Switch Series



## Troubleshooting

## Remote Version

## Operation Setup Check

After final adjustment it is advisable to check the performance of the probe relative to your entered settings.

## Ensure there is no mounting influence.

- When calibrating the mounting of the unit, there should be no product within at least 500 mm of the probe. After calibrating the unit the Sensor Value (\%) should read approximately $0.0 \%$ with no product near or touching the probe.
- Allow infeed to occur and note the Sensor Value (\%) change (if there is any) - as the level gets closer to the probe the Sensor Value (\%) number will increase and continue to increase as the product gets closer to, touches and covers the probe.
- The Gladiator is capable of switching repeatably and reliably without product contacting the probe for a wide variety of materials. Some very low dielectric materials may need to touch the probe to be detected.
- The Sensor Value (\%) will reach its maximum after the probe is covered - but the Switch Point can be set at any value less then the maximum. It is recommended to select the set point more than $10 \%$ below the maximum value seen with material touching the probe.
- For instance the following readings may occur during filling:

| Sensor Value (\%) |  |
| :--- | ---: |
| Before filling | $0.0 \%$ |
| Filling starts | $0.7 \%$ |
| Filling continue | $4.9 \%$ |
| Filling continue | $27.5 \%$ |
| Material approaching probe | $48.5 \%$ |
| Material contacts probe | $96.5 \%$ |
| Material covers probe | $285.7 \%$ |

A. You may choose to leave the Switch Point at the default $50 \%$. The Gladiator will switch reliably without contact of the material to the probe.
B. You may choose to adjust the Switch Point to $100 \%$ to switch when the product contacts the probe.

- By default the Switch Off $\%$ is set at $1 / 2$ of the Switch Point. You may wish to adjust this to a higher or lower number. This is adjustable in the Advanced Menu by selecting Switch Mode - Manual. You can then manually select your Switch On and Switch Off values.
- In general, you should not choose the Max Sensor \% (Max) value nor the Min Sensor \% (Min) value as the Switch Point.
- If possible, always have the Switch On \% at a value of at least 10\% less than the Max Sensor \% (Max) value and Switch Off at least 10\% more than the Min Sensor \% (Min).
- If the \% change on the display is too small then the Display Span parameter in the Advanced menu can expand the display resolution (select a larger number - smaller raw range) and vice versa. Changing the Display Span will change Switch Point value.


## Part Numbering



## Integral Probe Version

AS2100 Gladiator Admittance Switch - Integral Probe

## Power Supply

B $\quad 12-30$ VDC
U 12-30VDC and 90-260VAC

## Output Options

$\begin{array}{ll}\text { S } & 1 \times \text { SPDT Relay } \\ \text { D } & 1 \times \text { DPDT Relay }\end{array}$

## Housing

S Powder Coated Aluminium
C 316L Stainless Steel

## Guard Length (excludes 100 mm ground length)

## $1 \quad 150 \mathrm{~mm}$ (5.9")

## Temperature

1 Max. $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
2 Max. $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$
3 Max. $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$
4 Max. $450^{\circ} \mathrm{C}\left(842^{\circ} \mathrm{F}\right)\left(1.5^{\prime \prime}\right.$ mounting thread only)

## Probe Type

1 316L rod
2 Teflon Insulated 316L rod
3 Cable

## Mounting

TN07 3/4" NPT Thread
TB07 3/4" BSP Thread
TN10 1"NPT Thread
TB10 1" BSP Thread
TN15 1.5" NPT Thread
TB15 1.5" BSP Thread
FA2 $2^{\prime \prime}$ ANSI SS Flange (Class 150)
FD2 DIN50 SS Flange (PN 40)
Approvals (intrinsically safe barriers may be required, consult safety instructions)
X Not Required
A20A (Open Vessel) ATEX Grp II Cat $1 / 2 \mathrm{D}$ Ex iaD A20 IP65 T100 ${ }^{\circ} \mathrm{C}$ for Tamb $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
A20 (Closed Vessel - Internal) ATEX Grp II Cat $1 / 2 \mathrm{D}$ Ex iaD A20 IP65 T100 ${ }^{\circ} \mathrm{C}$
(Closed Vessel - External) ATEX Grp II Cat $1 / 2 \mathrm{D}$ Ex iaD A20 IP65 T100 ${ }^{\circ} \mathrm{C}$ for Tamb $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
i20A (Open Vessel) IECEx Zone 20 (Ex iaD tD A20 IP65 $\mathrm{T} 100^{\circ} \mathrm{C}$ Ta $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ )
i20 (Closed Vessel - Internal) IECEx Zone 20 (Ex iaD 20 IP65 T100 ${ }^{\circ} \mathrm{C} \mathrm{Ta}-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ ) (Closed Vessel - External) IECEx Zone 21 (Ex iaD A21 IP65 T100 ${ }^{\circ} \mathrm{C} \mathrm{Ta}-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ )
A22 ATEX Grp II Cat 3 GD T $75^{\circ} \mathrm{C}$ IP67 Tamb $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
(P)Probe ${ }^{2}$ (C)Cable Length

P10 100mm (4")
P30 300mm (11.8")
P50 500mm (19.6")
P100 1000mm (39.3")
C100 1000 mm (39.3")
C200 2000 mm (78.7")
C300 3000 mm (118.1")
C500 5000mm (196.9")

## Part Numbering

## Remote Probe Version



Some Approvals may require Intrinsically Safe Barriers.
Consult Safety Instructions for further information

## Remote Probe

AS2200 Remote Gladiator Admittance Probe

## Housing

S Powder Coated Aluminium
C 316L Stainless Steel
Guard Length (excludes 100 mm ground length)
$1 \quad 150 \mathrm{~mm}$ (5.9")

## Temperature

1 Max. $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
2 Max. $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$
3 Max. $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$
4 Max. $450^{\circ} \mathrm{C}\left(842^{\circ} \mathrm{F}\right)\left(1.5^{\prime \prime}\right.$ mounting thread only)

## Probe Type

1 316L rod
2 Teflon Insulated 316L rod
3 Cable

## Mounting

TN07 3/4" NPT Thread
TB07 3/4"BSP Thread
TN10 1"NPT Thread
TB10 1"BSP Thread
TN15 1.5" NPT Thread
TB15 1.5" BSP Thread
FA2 2" ANSI SS Flange (Class 150)
FD2 DIN50 SS Flange (PN 40)
Approvals (see Approvals Table) ${ }^{2}$
X Not Required
A20
A20A
i20
i20A
A22
(P)Probe ${ }^{3}$ (C)Cable Length

P10 100 mm (4")
P30 300 mm (11.8")
P50 500 mm (19.6")
P100 1000 mm (39.3")
C100 1000 mm (39.3")
C200 2000 mm (78.7")
C300 3000 mm (118.1")
C500 5000 mm (196.9")

## AS2200 S 1111 TB15 X P30

${ }^{3}$ Custom lengths available. Consult Factory

## Part Numbering



## Pump Protection Version



[^0]
## Specifications

Operating Voltage

- 12-30VDC (residual ripple no greater than 100 mV )
- 80 - 260VAC $50 / 60 \mathrm{~Hz}$.
-36-60VDC
Power Consumption
-<0.8W @ 24VDC
-<6W @ 48VDC
- <5VA @ 240VAC
- <3VA @ 115VAC

Communications

- GosHawk, Modbus.

Relay Output: (1) Integral (2) Remote

- Remote: $2 \times$ Form 'C' (SPDT) contacts, rated 5A at 240Vac resistive
- Integral: $1 \times$ DPDT or $1 \times$ SPDT rated 5A at 240Vac resistive
- Remote failsafe test facility for one relay (SPDT only).

Measurement Range
-0.2pF - 100nF.
Resolution

- 0.01 pF .

Electronic Accuracy

- 0.05 pF .

Stability

- $0.01 \% /{ }^{\circ} \mathrm{C}$.

Operating Temperature

- Remote electronics $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
- Integral Probe $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $\left.450^{\circ} \mathrm{C} 842^{\circ} \mathrm{F}\right)^{*}$
- Remote Probe $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $450^{\circ} \mathrm{C}\left(842^{\circ} \mathrm{F}\right)^{*}$.

Probe/Amplifier Separation

- Up to 500 m (1640ft) using specified extension cable.


## Cable Type Between Amplifier and Probe

- 4 conductor shielded twisted pair instrument cable
- Conductor size dependent on cable length
- BELDEN 3084A, DEKORON or equivalent
- Max: BELDEN 3084A = 500m (1640 ft)
- Max: DEKORON IED183AA002 = 350m (1150ft).

Maximum Operating Pressure

- 10 BAR at $120^{\circ} \mathrm{C}$.

Display (Remote version only)

- 2 line x 12 character alphanumeric LCD
- Backlight standard.

Memory - Remote

- Non-Volatile (No backup battery required)
->10 years data retention.
Enclosure Sealing
- Integral Probe IP67
- Remote Electronics IP65 (NEMA 4x)
- Remote Probe IP67.


## Cable Entries

## BSP process mounting

- 2 x M20 glands


## NPT process mounting

- $2 \times 3 / 4$ " NPTF threaded adaptors


## Remote

- $3 \times 20 \mathrm{~mm}(0.8$ "), $1 \times 16 \mathrm{~mm}$ ( 0.6 ") knock outs.


## Mounting

- 1/2" NPT or BSP Thread
-3/4" NPT or BSP Thread
- 1" NPT or BSP Thread
- 1.5" NPT or BSP Thread
- 50 mm (2") Flange (ANSI, DIN or JIS patterns available).


## Remote Test Input

- Press to test (used to check for malfunction of unit from remote position, PLC, SCADA etc).


## Dielectric Constants Table

| Material ${ }^{\text {Di }}$ | Dielectric Constant | Material | Dielectric <br> Constant | Material ${ }^{\text {D }}$ | Dielectric Constant | Material $\quad$ Die | Dielectric Constant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetal | 3.6 | Castor Oil | 2.6 | Glycerine | 47.0 | Palmitic Acid | 2.3 |
| Acetic Acid | 6.1 | Camphene | 2.3 | Glycerol | 43.0 | Pentane | 1.8 |
| Acetone | 17.7 | Cement | 2.1 | Glycol | 35.6 | Phenol | 9.9 |
| Acetyl Acetone | 23.1 | Chloracetic acid | 12.3 | Heptane | 1.9 | Phenol Acetate | 6.9 |
| Acetyl Bromide | 16.5 | Chlorine | 2.0 | Heptanoic Acid | 2.5 | Phosgene | 4.7 |
| Allyl Alcohol | 21.0 | Chloroform | 5.5 | Hexane | 1.9 | Phosphorus | 4.1 |
| Allyl Bromide | 7.0 | Creosol | 10.6 | Hydrogen Bromide | 3.8 | Polyethylene chips | 1.3 |
| Allyl Choloride | 8.2 | Cyclohexane | 2.0 | Hydrogen Chloride | 4.6 | Polyethylene powder | - 1.4 |
| Allyl lodide | 6.1 | Deuterium | 1.3 | Hydrogen Cyanide | 95.4 | Propyl Acetate | 6.3 |
| Ammonia | 15.5 | Deuterium Oxide | 78.3 | Hydrogen Fluoride | 84.0 | Propyl Alcohol | 21.8 |
| Amyl Alcohol | 11.2 | Dichloracetone | 14.0 | Hydrogen lodide | 2.9 | Propyl Benezene | 2.4 |
| Amyl Bromide | 6.3 | Dichlorobenzene | 2.8 | Hydrogen Peroxide | 84.2 | Pyridine | 12.5 |
| Amyl Choloride | 6.6 | Dichloroethane | 16.7 | Hydrogen Sulfide | 5.8 | Reburned Lime | 2.2 |
| Amyl Ether | 3.1 | Diethyl Sulfide | 7.2 | Hydrazine | 52.9 | Sand (Dry) | 4.8 |
| Amyl lodide | 6.9 | Dimethyl Ethyl | 11.7 | lodine | 118.0 | Sodium Chloride | 6.1 |
| Amyl Nitrate | 9.1 | Dimethyl Sulfide | 6.3 | Isobutyl Alcohol | 18.7 | Sodium Oleate | 2.7 |
| Arsenic Tribromide | 9.0 | Dimethyl Sulfate | 55.0 | Kerosene | 1.8 | Succinic Acid | 2.4 |
| Arsenic Trichloride | 12.4 | Dowtherm | 3.3 | Lead Oleate | 3.2 | Sodium Chloride | 6.1 |
| Arsenic Triiodide | 7.0 | Ethanol | 24.3 | Lonone | 10.0 | Sulphur | 3.4 |
| Asphalt | 2.65 | Ethyl Acetate | 6.4 | Menthol | 3.95 | Sulphur Dioxide | 17.6 |
| Benzene | 2.3 | Ethyl Amyl Ether | 4.0 | Mesityl Oxide | 15.4 | Sulfuryl Chloride | 10.0 |
| Benzil | 13.0 | Ethyl Benzene | 2.5 | Methanol | 33.6 | Sulphur Trioxide | 3.6 |
| Benzoyl Chloride | 22.1 | Ethyl Benzoate | 6.0 | Methyl Alcohol | 33.0 | Teflon Powder | 1.3 |
| Benzyl Alcohol | 13.0 | Ethyl Cyclobutane | 1.9 | Methyl Ether | 5.0 | Teterabromiethane | 7.1 |
| Benzyl Chloride | 6.4 | Ethylene Chloride | 10.5 | Methyl Ether Ketone | - 18.4 | Thionyl Bromide | 9.1 |
| Boron Bromide | 2.6 | Ethylene Cyanide | 58.3 | Mineral Oil | 2.1 | Thionyl Chloride | 9.3 |
| Bromine | 3.1 | Ethylene Glycol | 37.0 | Nephthyl Ethyl Ether | r 3.2 | Titanium Tetrachloride | - 2.8 |
| Butane | 1.4 | Ethylene Oxide | 13.9 | Nitroethane | 19.7 | Toluene | 2.4 |
| Butyl Chloride | 9.6 | Ethyl lodide | 7.4 | Nitromethane | 39.4 | Trichloroxoluene | 6.9 |
| N Butyl lodide | 6.1 | Ethyl Nitrate | 19.7 | Octane | 1.96 | Trimetylbenzene | 2.2 |
| Iso Butyl lodide | 5.8 | Ethyl Silicate | 4.1 | Octyl Alcohol | 3.4 | Trimethyl Borate | 8.2 |
| Cable Oil | 2.2 | Fly Ash | 2.6 | Octylene | 4.1 | Urethane | 3.2 |
| Camphene | 2.7 | Formic Acid | 58.5 | Oleic Acid | 2.46 | Valeric Acid | 2.6 |
| Carbon Dioxide | 1.6 | Freon 12 | 2.4 | Oil, Oiive | 3.1 | Vinyl Ether | 3.9 |
| Carbon Disulphide | 2.6 | Freon 11 | 3.1 | Oil, Peanut | 2.2 | Water | 80.0 |
| Carbon Tetrachloride | de 2.2 | Freon 113 | 2.6 | Oil, Transformer | 2.2 | Xylene | 2.4 |

All company or product names are registered trademarks or trademarks of their respective owners.

## Hawk Measurement Systems (Head Office)

15-17 Maurice Court
Nunawading VIC 3131, AUSTRALIA
Phone: +61 398734750
Fax: +61 398734538
info@hawk.com.au

## Hawk Measurement

96 Glenn Street
Lawrence, MA 01843, USA
Phone: +1 888 HAWKLEVEL (1-888-429-5538)
Phone: +1 9783043000
Fax: +1 9783041462
info@hawkmeasure.com

For more information and global representatives: www.hawkmeasure.com


[^0]:    AS2100 B S S $\quad 1 \quad 1 \quad 1$ TB05 X P05

