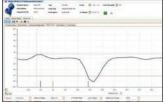


Eclipse® Modell 706 GWR (Guided Wave Radar) HochleistungsFüllstandmessumformer

BESCHREIBUNG

Der Eclipse® Modell 706 Hochleistungs-Messumformer ist ein mit 24 V Gleichstrom arbeitender 2-Leiter-Füllstandmessumformer, der nach dem bewährten und allgemein anerkannten GWR-Prinzip (Guided Wave Radar) funktioniert. Dieser hochmoderne Füllstandmessumformer ist mit einer Reihe technischer Neuerungen ausgestattet und zeichnet sich durch eine Messleistung aus, die die Leistung zahlreicher herkömmlicherer Technologien übertrifft.


Mit Hilfe der "Diodenschaltungs"-Technologie, ergänzt durch das umfassendste auf dem Markt erhältliche Sondensortiment, kann dieser aus einem Element bestehende Messumformer bei einer Vielzahl von Anwendungen eingesetzt werden, die von sehr leichten Kohlenwasserstoffen bis zu Medien auf Wasserbasis reichen.

Das innovative, abgewinkelte und aus zwei Kammern bestehende Gehäuse ist inzwischen in der Branche weit verbreitet. Das 1998 von Magnetrol® der Branche erstmalig vorgestellte Gehäuse ist abgewinkelt, damit Verdrahtung und Konfiguration extrem einfach erfolgen können und die vielseitige Grafik-LCD-Anzeige stets bequem im Blick bleibt.

Ein einziger universeller Messumformer des Modells 706 kann für alle Sondentypen verwendet werden. Darüber hinaus bietet er eine höhere Zuverlässigkeit, da er für den Einsatz in Geräten mit kritischen SIL2-Sicherheitsschaltungen bestätigt ist.

Das ECLIPSE Modell 706 unterstützt beide Standards FDT/DTM und Enhanced DD (EDDL), die das Betrachten nützlicher Informationen zur Konfiguration und Diagnose ermöglichen, z.B. zur Echokurve in Tools wie PACT*ware*™, AMS Device Manager und verschiedene HART® Feldkommunikatoren.

With the second second

Eclipse® Modell 706 DTM

Messung von Füllstand, Trennschicht Volumen und Durchfluss

ANWENDUNGEN

MEDIEN:

Flüssigkeiten, Feststoffe oder Schlämme; Kohlenwasserstoffe bis Medien auf Wasserbasis (Epsilonwert \mathbf{E}_r = 1,2–100)

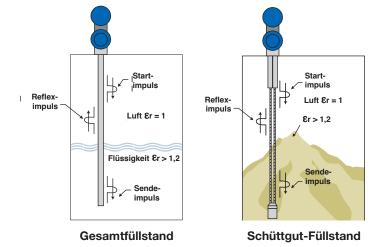
BEHÄLTER: Die meisten Prozess- und Lagerbehälter gemäß den Sonden-Nenndaten für Temperatur und Druck.

BEDINGUNGEN: Sämtliche Füllstandmessungen und Kontrolleinsätze wie etwa Prozessbedingungen mit sichtbarem Dampf, Schaum, Wellenbewegung, Blasenbildung oder Kochen, schnellen Befüll- und Entleerungsvorgängen, niedrigem Füllstand und schwankenden Epsilonwerten oder Dichte.

EIGENSCHAFTEN UND MERKMALE

- Multivariabler 2-Leitermessumformer mit 24 VDC zur Messung von Füllstand, Trennschicht, Volumen oder Durchfluss.
- Der einzigartige Adapter ermöglicht den Betrieb mit Sonden des Modells 705.
- Diodenschaltungs-Technologie mit branchenweit bester Signalstärke und hervorragendem Signal-zu-Rausch-Verhältnis (SRV), was die Leistungsfähigkeit in schwierigen Anwendungen mit niedrigem Epsilonwert verbessert.
- Füllstandmessung wird nicht von sich ändernden Medieneigenschaften beeinflusst.
- Füllstände müssen zur Kalibrierung nicht bewegt werden.
- Überfüllsichere Sonden ermöglichen die Messung des "tatsächlichen Füllstands" auf der kompletten Sondenlänge bis hin zum Prozessanschluss, ohne Einsatz spezieller Algorithmen.
- 4 Bedientasten und Grafik-LCD-Anzeige ermöglichen das bequeme Betrachten von Konfigurationsparametern und Echokurve
- Proaktive Diagnose weist nicht nur darauf hin, was falsch ist, sondern bietet auch Tipps zur Fehlerbehebung an.
- Neun gebräuchliche Tankformen zur volumetrischen Messung.

- 30-Punkte-Linearisierung f
 ür weniger gebr
 äuchliche Tankformen.
- Zwei Standard-Ablaufkanäle und vier Standard-Wehre in verschiedenen Größen für die Durchflussmessung.
- Generische Gleichung für Kanäle, die nicht dem Standard entsprechen.
- Um 360° drehbares Messumformergehäuse, das getrennt werden kann, ohne dass der Behälter druckentlastet werden muss.
- Sonden ausgelegt bis max. +450 °C/431 bar.
- Sattdampfanwendungen bis 207 bar und 425 °C bei Installation in einem Bypassgefäß.
- Einsatz bei Tiefsttemperaturen bis zu -196 °C.
- Messumformer kann in einer Entfernung von max. 3,6 m von der Sonde montiert werden.
- Gemäß SIL-Bewertung für den Einsatz in SIL-2/3- Messketten geeignet (vollständiger SIL-Bericht auf Anfrage erhältlich).
- · Keine beweglichen Teile.
- FOUNDATION Fieldbus[™], PROFIBUS PA und Modbus digital Ausgang.
- Lloyd's Register.


FUNKTIONSPRINZIP

FUNKTIONSPRINZIP

Der ECLIPSE GWR-Messumformer funktioniert nach dem TDR-Prinzip (Time Domain Reflectometry). Die TDR-Technologie basiert dabei auf elektromagnetischen Impulsen, die entlang einer Messsonde geführt werden. Wenn ein solcher messsondengeführter Startimpuls (GWR, Guided Wave Radar) eine Oberfläche erreicht, deren Epsilonwert höher ist als der der Luft ($\mathbf{E}_{\Gamma}=1$), die er durchquert, wird ein Teil des Signals reflektiert. Der Messumformer ermittelt über einen sehr schnellen Zeitmesskreis präzise die Differenz zwischen Startimpuls und Refleximpuls und liefert ein absolut füllstandproportionales Ausgangssignal. Die Amplitude der Reflexion hängt vom Epsilonwert des Produkts ab. Je höher der Epsilonwert, desto größer ist die Reflexion.

TRENNSCHICHTMESSUNG

Das ECLIPSE Modell 706 kann sowohl den oberen Flüssigkeitsfüllstand als auch den Trennschichtfüllstand messen. Da nur ein Teil des Impulses von der niedrigen oberen dielektrischen Fläche reflektiert wird, läuft ein gewisses Maß an Energie entlang der GWR-Sonde durch die obere Flüssigkeit. Der restliche Startimpuls wird erneut reflektiert, wenn er die untere Flüssigkeit mit dem höheren Epsilonwert erreicht. Dazu muss die obere Flüssigkeit einen Epsilonwert von weniger als 10 und die untere Flüssigkeit einen Epsilonwert über 15 aufweisen. Eine typische Anwendung wäre Öl auf Wasser, wobei die obere Schicht (Öl) nicht-leitend ($\mathfrak{E}_{\Gamma} \approx 2,0$) und die untere Schicht (Wasser) stark leitend ist ($\mathfrak{E}_{\Gamma} \approx 80$). Die Dicke der oberen Schicht kann min. 50 mm betragen und max. der Länge der GWR-Sonde entsprechen.

Oberes
Füllstandsignal

Trennschichtfüllstandsignal

Zeit

Trennschichtfüllstand

Trennschichtfüllstand

EMULSIONSSCHICHTEN

Da Emulsionsschichten (auch "Schwarzwasser"-Trennschichten genannt) die Stärke des reflektierten Signals in einer Trennschichtanwendung verringern können, werden GWR-Messumformer in der Regel für Anwendungen mit klar voneinander trennbaren Schichten empfohlen.

Wegen seiner leistungsstarken internen Messalgorithmen neigt das ECLIPSE Modell 706 jedoch dazu, die obere Schicht einer Emulsion zu erkennen. Wenden Sie sich an den Hersteller, wenn Sie bei einer bestimmten Anwendung Fragen zu Emulsionsschichten haben.

SATTDAMPFANWENDUNGEN (Boiler, Speisewasser-Heizungen usw.)

Da die Temperatur einer Sattdampfanwendung steigt, nimmt ebenfalls der Epsilonwert des Dampfraums zu. Dieser Anstieg des Epsilonwerts des Dampfraums verursacht eine Verzögerung der GWR-Signalausbreitungszeit beim Weg des Signals durch die Sonde, wodurch der Flüssigkeitsfüllstand niedriger zu sein scheint als er tatsächlich ist.

HINWEIS: Der mit dieser Ausbreitungsverzögerung in Zusammenhang stehende Messfehler hängt von der Temperatur ab und ist eine Funktion der Quadratwurzel des Epsilonwerts des Dampfraums. So würde z.B. eine Anwendung ohne Ausgleich mit +230 °C Füllstandfehler von ca. 5,5 % anzeigen; bei einer Anwendung mit +315 °C betrüge der Fehler nahezu 20 %!

Der ECLIPSE Messumformer Modell 706 und die Dampf-Koaxialsonde Modell 7yS ermöglichen eine einzigartige Lösung für diesen Anwendungstypen.

Die Auswirkungen der sich ändernden Dampfbedingungen kann durch Einsatz eines mechanischen Dampfziels ausgeglichen werden, das im Inneren in der Nähe der Oberseite der Koaxialsonde Modell 7YS platziert wird. Durch genaue Kenntnis der Position, an der das Ziel sich bei Raumtemperatur befindet, und die anschließende kontinuierliche Überwachung seiner scheinbaren Position gestattet eine Rückberechnung des Epsilonwerts des Dampfraums.

Die Kenntnis des Epsilonwerts des Dampfraums ermöglicht wiederum einen präzisen Ausgleich des tatsächlichen Füllstands. Hierbei handelt es sich um ein patentiertes Verfahren, das mittels zweier US-Patente (US 6642801 und US 6867729) geschützt ist, die zum einen das mechanische Zielkonzept und zum anderen den zugehörigen Software-Algorithmus abdecken.

Wenden Sie sich an den Hersteller, wenn Sie weitere Informationen zu Sattdampfanwendungen benötigen.

Zusätzlich zur Dampfkompensation, enthält die Standard Dampfsonde Model 7yS folgende Merkmale:

Nur ein Abstandhalter aus Metall am Ende der Sonde

Dadurch sind keine Abstandhalter entlang der Sonde nötig und beseitigt zugleich Bedenken über die chemische Beständigkeit.

Ein einzigartiges (zum Patent angemeldetes) Design - Kondensationsrohr

Dieses Design ist bei Hochtemperaturanwendungen sehr wichtig, bei denen sich Kondensat an der Radarsonde bildet und dadurch Kompensationsprobleme verursachen kann.

Mechanisches Dampfziel - individuell wählbar

Dies ermöglicht eine Optimierung der Dampfkompensation in Abhängigkeit einer bestimmten Anwendung

ÜBERFÜLLSICHERUNG

Obwohl Prüfinstitute wie WHG oder VLAREM den Überfüllschutz während des zuverlässigen Betriebs unter Prüfbedingungen bescheinigen, wenn der Messumformer als Überfüllungsalarm eingesetzt wird, basieren die Analysen der Institute auf der Annahme, dass die Anlage so ausgelegt ist, dass der Behälter oder das seitlich montierte Bezugsgefäß nicht überfüllt werden kann.

Es gibt jedoch praktische Anwendungen, bei denen eine GWR-Sonde vollständig bis zum Prozessanschluss in die Flüssigkeit eingetaucht ist (Dichtfläche des Flansches). Obwohl die betroffenen Bereiche anwendungsspezifisch sind, verfügen typische GWR-Sonden jeweils an der Spitze über eine Übergangszone (oder evtl. eine Totzone), an der interagierende Signale entweder die Linearität der Messung beeinflussen oder zu einem vollständigen Verlust des Signals führen können, was wesentlich gravierender ist.

Während einige Hersteller von GWR-Messumformern spezielle Algorithmen einsetzen, um die Füllstandmessung zu "ermitteln", wenn diese unerwünschte Signalwechselwirkung auftritt und das tatsächliche Füllstandsignal verloren geht, bietet das ECLIPSE Modell 706 eine einzigartige Lösung, die auf einem Konzept mit dem Namen **Overfill Safe Operation** (Betrieb mit Überfüllsicherung) basiert.

Eine überfüllsichere Sonde ist dadurch definiert, dass sie über die gesamte Länge der Messsonde eine vorhersagbare und gleichmäßige charakteristische Impedanz aufweist. Sonden dieses Typs ermöglichen dem ECLIPSE Modell 706 die akkurate Messung von Füllständen bis zum Prozessflansch, ohne nicht messbare Zonen an der Spitze der GWR-Sonde.

Überfüllsicherung Die GWR-Sonden sind speziell für ECLIPSE GWR ausgelegt und Koaxialsonden können am Behälter an beliebiger Stelle installiert werden. Überfüllsichere Sonden sind für ein umfassendes Sortiment an Koaxial- und Bezugsgefäß-Modellen erhältlich.

ÜBERSICHT – SONDENSORTIMENT

DREI ARTEN VON GWR-SONDEN

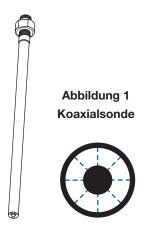
Bei einem Basis-Messumformer ECLIPSE Modell 706, der mit allen Sonden betrieben werden kann, ist die Auswahl der korrekten GWR- (Guided Wave Radar) Sonde die wichtigste Entscheidung im Anwendungsprozess. Durch die Konfiguration der Sonde werden die grundlegenden Leistungseigenschaften festgelegt.

Alle ECLIPSE Sonden des Modells 706 lassen sich anhand von drei Basiskonfigurationen beschreiben:

- Koaxialsonde
- Doppelseilsonde
- Einzel-Element-Sonde (starrer Stab oder flexibles Seil)

Jede von diesen Sondenkonfigurationen hat spezifische Stärken und Schwächen. Zwar kann es Überschneidungen geben und verschiedene Sonden können sicherlich in ähnlichen Anwendungen verwendet werden, ist es jedoch wichtig, ihre grundlegenden Unterschiede zu verstehen, so dass man den Sondentyp auswählen kann, der eine optimale Leistung ermöglicht.

Die folgenden Beschreibungen beziehen sich auf Angaben zur Physik der GWR-Technologie und sind nicht spezifisch für das ECLIPSE Modell 706.


KOAXIALSONDEN

Koaxialsonden sind der effizienteste GWR-Sondentyp und sollten bei allen Anwendungen als erstes in Betracht gezogen werden. Analog zur Effizienz von Koaxialkabel, ermöglichen Koaxialsonden die nahezu ungehinderte Übertragung von Hochfrequenzpulsen über die gesamte Länge.

Das elektromagnetische Feld, das zwischen Innenstab und Außenrohr entsteht, wird vollständig eingedämmt und ist über die gesamte Länge der Sonde gleichmäßig. Siehe Abbildung 1.

Dies bedeutet, dass die Koaxialsonde immun ist gegen Näheeffekte anderer Objekten im Behälter. Sie kann daher im Wesentlichen überall eingesetzt werden, wo sie mechanisch eingebaut werden kann. Die Effizienz und Gesamtempfindlichkeit der Koaxialkonfiguration ermöglicht eine robuste Signalstärke, sogar in Anwendungen mit extrem niedrigen Epsilonwert ($\epsilon_{\Gamma} \ge 1,4$). Die Empfindlichkeit dieser "geschlossenen" Ausführung erhöht jedoch in Anwendungen mit möglicher Ansatzbildung die Anfälligkeit für Messfehler.

Alle ECLIPSE Koaxialsonden des Modells 706 sind standardmäßig überfüllsicher ausgelegt.

BASISVERSION-FÜR SAUBERE FLÜSSIGKEITEN

Die GWR-Koaxialsonden mit Basisdurchmesser (22,5 mm) werden für den Einsatz in sauberen Anwendungen oder speziellen Anwendungen wie etwa Sattdampf empfohlen. Abstandhalter aus Teflon®, PEEK oder Aluminiumoxid, die den Innenstab im Außenrohr zentrieren, sind in Abständen von jeweils 60 cm angebracht. Sie gewährleisten eine perfekte charakteristische Impedanz entlang der gesamten Sondenlänge.

Diese Sonde wird für Anwendungen mit Viskositäten mit einem Maximum bis 500 cP (mPa.s) empfohlen.

VERGRÖSSERTES AUSSENROHR - FÜR SCHWIERIGE ANWENDUNGEN

Die standardmäßigen GWR-Koaxialsonden mit großem Durchmesser (45 mm) sind allgemein für die meisten Anwendungen geeignet. Sie können sowohl direkt im Tank als auch in Bypass-Bezugsgefäßen, Schwallrohren oder Tragrahmenbehältern installiert werden.

Der robuste Aufbau reduziert die Anzahl der erforderlichen Abstandhalter, so dass die Sonde in Anwendungen verwendet werden kann, bei denen ein höheres Risiko der Ansatzbildung besteht. Um die Gefahr der Ansatzbildung zu verringern, wird empfohlen, bis zu einer Länge von 2,54 m einen einzigen Bodenabstandhalter anzubringen. Die Gesamtempfindlichkeit und Leistung einer großen GWR-Koaxialsonde entsprechen der einer standardmäßigen GWR-Koaxialsonde, bietet jedoch den sehr wichtigen Vorteil, dass sie in Anwendungen mit Viskositäten bis zu 2.000 cP (mPa.s) verwendet werden kann.

ÜBERSICHT - SONDENSORTIMENT(FORTS.)

DREI ARTEN VON GWR-SONDEN

OPTIONALER SPÜLANSCHLUSS

Die Wartung von GWR-Koaxialsonden in Anwendungen, die durch Ansatzbildung oder Kristallisation beeinträchtigt werden, kann durch den Einsatz eines optionalen Spülanschlusses erheblich verbessert werden. Dieser Spülanschluss ist eine Metallverlängerung mit einem Anschluss, der über dem Prozessanschluss angeschweißt wird. Über den Anschluss kann das Innere der GWR-Koaxialsonde während der Wartungsarbeiten gereinigt werden.

Hinweis: Die beste Möglichkeit, um die Auswirkungen von Kondensation oder Kristallisation zu verhindern, ist die Installation einer angemessenen Isolierung oder Begleitheizung (Dampf oder elektrisch). Ein Spülanschluss ist kein Ersatz für eine korrekte Wartung, jedoch kann damit die Wartungshäufigkeit verringert werden.

BEZUGSGEFÄSSSONDEN-FÜR VER-SCHMUTZTE FLÜSSIGKEITEN

Bei der von Magnetrol entwickelten GWR-Bezugsgefäßsonde handelt es sich um eine einzigartige Stabsonde, bei der ein vorhandenes oder neues Bezugsgefäß, Tragrahmenbehälter oder Schwallrohr als zweiter Leiter dazu verwendet wird, die gleiche Signalausbreitung wie bei einer GWR-Koaxialsonde zu erzeugen. GWR-Bezugsgefäßsonden sind für Metall-Bezugsgefäße mit einem Durchmesser von 2 Zoll (DN50), 3 Zoll (DN80) oder 4 Zoll (DN100) ausgelegt und verwenden eine spezielle Vorrichtung zur Impedanzanpassung, die in der gleichen charakteristischen Impedanz einer herkömmlichen GWR-Koaxialsonde resultiert.

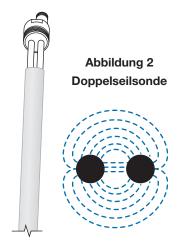
Die Gesamtempfindlichkeit und Leistung einer GWR-Bezugsgefäßsonde entsprechen der einer standardmäßigen GWR-Koaxialsonde. Dank der Auslegung als einzelner Leiter ist jedoch der Einsatz in Anwendungen mit Viskositäten bis max. 10.000 cP (mPa.s) möglich.

NEU! MODELL 705/706 ADAPTER

Bezeichnet durch die 9. Ziffer = A oder B der Modellnummer (siehe Seite 22) ist der GWR-Transmitter Modell 706 mit HART® digital Ausgang jetzt über einem Adapter mit älteren Sonden des Modells 705 kompatibel.

Der Adapter wird zwischen dem Transmitter des Modells 706 und einer Sonde des Modells 705 installiert.

Dieses einzigartige Zubehör ermöglicht es, alle Leistungsvorteile des Transmitter 706 der neuesten Generation zu nutzen, wie z.B.: proaktive Diagnose und benutzerfreundliche Konfiguration!


DREI ARTEN VON GWR-SONDEN

DOPPELSEILSONDEN

Das Verhältnis zwischen Doppelseil- und Koaxialsonde ähnelt dem von älteren, 2-Leiter-Sonden mit Antenneneinführung zu modernen Koaxialkabeln. 2-Leiter-Kabel mit 300 Ohm verfügen einfach nicht über die Leistungsfähigkeit eines Koaxialkabels mit 75 Ohm, so dass die Ausführung mit parallelem Leiter weniger empfindlich ist als bei konzentrischen Koaxialkabeln. Siehe Abbildung 2.

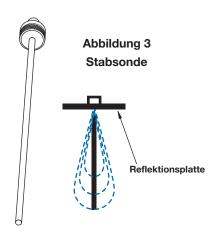
Dies bedeutet, dass GWR-Doppelseilsonden über die Fähigkeit verfügen, niedrige Epsilonwerte mit $\epsilon_r \ge 1,7$ zu messen.

Allerdings kann die beträchtliche Schlackenbildung zwischen den Kabeln an der FEP-Beschichtung zu fehlerhaften Messungen führen. Sie sollte daher vermieden werden. Abbildung 2 zeigt außerdem, dass, obwohl ein Großteil des elektromagnetischen Feldes zwischen beiden Kabeln entsteht, es zusätzlich ein gewisses Maß an peripherer Energie gibt, die sich nach außen ausdehnt, so dass die Doppelseilsonde empfindlicher auf die Näheeffekte der Objekte reagiert, die sich in dessen unmittelbarer Umgebung befinden. Daher wird empfohlen, das aktive Element der Doppelseilsonde mindestens 25 mm von Metallobjekten entfernt zu halten.

STABSONDEN

GWR-Stabsonden mit einem Element arbeiten anders als Koaxial- oder Doppelseilsonden. Da sie nur über einen Leiter verfügen, werden die Energieimpulse zwischen Sondenstab und Montagegewinde bzw. Montageflansch erzeugt. Anders ausgedrückt: der Impuls wird am Stab entlang geleitet und ermittelt dabei die Differenz zu seinem Ausgangspunkt an der Oberseite des Tanks.

Die Energie und Effizienz des "Impulsstarts" hängen direkt davon ab, wie groß die Metallfläche um ihn herum an der Oberseite des Behälters ist. Diese metallische Oberfläche an der Spitze der Sonde wird "Impulsstartplatte" genannt. Je größer die Impulsstartplatte, desto effizienter ist die Signalausbreitung entlang der Sonde.


Abbildung 3 zeigt eine Sonde mit einem Element und die effektive Ausbreitung des elektromagnetischen Impulses in Tropfenform, wenn er sich von der Oberseite des Tanks entfernt (Bodenreferenz). Von den drei Sondentypen weist die Konfiguration mit einem Element (Stab oder Seil) die niedrigste Effizienz auf, kann jedoch in einem offenen, nicht metallischen Behälter einen minimalen Epsilonwert von ca. $\varepsilon_r > 1,7$ ermitteln.

Diese Epsilon-Leistung verbessert sich beträchtlich ($\epsilon_{\rm r} > 1,4$) wenn die Stabsonde 50–150 mm von der Wand eines Metalltanks entfernt oder in einem Bezugsgefäß bzw. Tragrahmenbehälter aus Metall installiert wird. Da es sich bei der Sonde um ein "offenes" System handelt, weist sie zwei starke Tendenzen auf

- Sie ist äußerst unempfindlich, was Ansatzbildung anbelangt.
 (Die PFA-isolierte Sonde eignet sich am besten für schwere Ansatzbildung.)
- Die wird am stärksten von Distanzproblemen betroffen.

Dabei muss angemerkt werden, dass eine parallele Metallwand die Leistung einer Stabsonde STEIGERT. Dagegen kann ein einzelner Metallgegenstand, der neben der Sonde hervorsteht, fälschlicherweise als Flüssigkeitsfüllstand ermittelt werden. Diese Tendenzen sind anwendungs-/anlagenspezifisch. Eine korrekte Zuordnung von Stabsonde und Bezugsgefäß gewährleistet daher, dass das umfassende Sortiment an Bezugsgefäßsonden des EC-LIPSE Modells 706 die Leistungs-/Empfindlichkeitsvorteile einer Koaxialsonde mit der Viskositätsimmunität einer Stabsonde kombiniert. Die Bezugsgefäßsonden sind überfüllsicher ausgelegt, können in Trennschicht- und anderen schwierigen Anwendungen mit niedrigem Epsilonwert verwendet werden und sind einzigartig im Sortiment von MAGNETROL bzw. für das ECLIPSE Modell 706.

Wenden Sie sich an den Hersteller, wenn Sie Fragen haben oder zusätzliche Hilfe benötigen.

GWR-KOAXIAL/BEZUGSGEFÄSS-SONDE GWR-DOPPELSEILSONDE Signalausbreitung Signalausbreitung Draufsicht Draufsicht

GWR- Sonde	Beschrei- bung	Anwendung Installation		Dielektrizitäts- konstante 23	Temperatur- bereich ④	Max. Druck Vakuum ®		Überfüll- sicher	Viskosität cP (mPa.s)
Solide	builg					Druck		Sicher	(IIIFa.s)
				axialsonde	n—Flüssigkeiten		1		
7yT	Standard- temperatur	Füllstand / Trennschicht	Tank/Bezugs- gefäß	ε _r 1,4–100	-40 bis +200 °C	70 bar	Ja	Ja	500/2000
7yP	Hochdruck	Füllstand / Trennschicht	Tank/Bezugs- gefäß	ε _r 1,4–100	-196 bis +200 °C	431 bar	Voll	Ja	500/2000
7yD	Hochtemp./ Hochdruck	Füllstand / Trennschicht	Tank/Bezugs- gefäß	ε _r 1,4–100	-196 bis +450 °C	431 bar	Voll	Ja	500/2000
7yS	Dampfsonde	Sattdampf	Tank/Bezugs- gefäß	ε _r 10–100	-40 bis +425 °C 6	207 bar	Voll	Nein ⑦	500
			GWR-Bezu	gsgefäßson	den—Flüssigkeit	en			
7yG	Standard- temperatur	Füllstand / Trennschicht	Bezugsgefäß	ε _r 1,4–100	-40 bis +200 °C	70 bar	Ja	Ja	10000
7yL	Hochdruck	Füllstand / Trennschicht	Bezugsgefäß	ε _r 1,4–100	-196 bis +200 °C	431 bar	Voll	Ja	10000
7yJ	Hochtemp./ Hochdruck	Füllstand / Trennschicht	Bezugsgefäß	ε _r 1,4–100	-196 bis +450 °C	431 bar	Voll	Ja	10000
			GWR-S	tabsonden-	–Flüssigkeiten				
7yF	Standard- temperatur	Füllstand	Tank	ε _r 1,7–100	-40 bis +200 °C	70 bar	Ja	Nein ®	10000
7yM	Hochdruck	Füllstand	Tank	ε _r 1,7–100	-196 bis +200 °C	431 bar	Voll	Nein ®	10000
7yN	Hochtemp./ Hochdruck	Füllstand	Tank	ε _r 1,7–100	-196 bis +450 °C	431 bar	Voll	Nein ®	10000
			GWR-S	Seilsonden-	–Flüssigkeiten				
7y1	Standard- temperatur	Füllstand	Tank	ε _r 1,7–100	-40 bis +200 °C	70 bar	Ja	Nein ®	10000
7y3	Hochdruck	Füllstand	Tank	ε _r 1,7–100	-196 bis +200 °C	431 bar	Voll	Nein ®	10000
7y6	Hochtemp./ Hochdruck	Füllstand / Trennschicht	Bezugsgefäß	ε _r 1,4–100	-196 bis +450 °C	431 bar	Voll	Nein ®	10000
			GWR-Dop	pelseilsond	en—Flüssigkeite	n			
7y7	Standard- temperatur	Füllstand / Trennschicht	Tank	ε _r 1,7–100	-40 bis +200 °C	70 bar	Ja	Nein ®	1500
			GWR	-Seilsonder	ı—Feststoffe				
7y2	Schüttgüter- sonden	Füllstand	Tank		-40 bis +65 °C	Atmos.	Nein	Nein ®	10000
			GWR-Do	ppelseilson	den—Feststoffe				
7y5	Schüttgüter- sonden	Füllstand	Tank	ε _r 1,7–100	-40 bis +65 °C	Atmos.	Nein	Nein ®	1500

① 2. Ziffer A=Englische Maße, C=Metrische Maße.

 $^{^\}circ$ Min. $\epsilon_{\rm r}$ 1.2 mit aktiviertem Ende der Sondenanalyse.

③ Stabsonden, die direkt im Behälter montiert sind, müssen 75–150 mm − von der Metallwand des Tanks entfernt sein, damit der minimale Epsilonwert von 1,4 ermittelt werden kann; andernfalls beträgt ℰ_r min = 1,7.

⁴ Hängt vom Material des Sondenabstandhalters ab. Informationen zu den Abstandhalteroptionen siehe Modellauswahl.

⑤ ECLIPSE-Sonden mit O-Ringen sind für den Vakuumeinsatz (negativer Druck) geeignet; es sind jedoch nur die Sonden mit Glasdichtungen hermetisch dicht bis <10-8 cc/s bei 1 at Helium.</p>

[®] Bei Installation in einem Bypassgefäß.

Wenden Sie sich bei Fragen zu Überfüllanwendungen an den Hersteller

[®] Die Überfüllsicherung kann über die Software realisiert werden.

TECHNISCHE DATEN - MESSUMFORMER

PHYSIKALISCHE DATEN

Auslegung des Systems	S			
Messprinzip		GWR (Guided Wave Radar) auf Basis des TDR-Prinzips (Time Domain Reflectometry)		
Eingang				
Messgröße		Füllstand, wie mittels GWR-Übertragungszeit ermittelt		
Messbereich		15 cm bis 30 m; Modell 7yS Sonde 610 cm max.		
Ausgang				
Тур		4 bis 20 mA mit HART: 3,8 mA bis 20,5 mA einsetzbar (gemäß NAMUR NE43)		
		FOUNDATION Fieldbus™: H1 (ITK Ver. 6.1.1)		
		PROFIBUS PA		
		Modbus		
Auflösung	Analog:	0,003 mA		
	Digitalanzeige:	1 mm		
Schleifenwiderstand		591 Ohm bei 24 VDC und 22 mA		
Fehleralarm		Auswählbar: 3,6 mA, 22 mA (entspricht den Anforderungen von NAMUR NE 43),		
		oder HOLD letzte Ausgabe		
Diagnoseanzeige		Entspricht den Anforderungen von NAMUR NE107		
Dämpfung		Einstellbar 0-10 s		
Benutzerschnittstelle				
Tastatur		Menügesteuerte Dateneingabe mit 4 Bedientasten		
Anzeige		Grafische Flüssigkristallanzeige		
Digitale Kommunikati	on/Systeme	HART Version 7—mit Feldkommunikator, Foundation Fieldbus™, AMS oder FDT		
		DTM (PACTware™), EDDL		
		FOUNDATION Fieldbus™, PROFIBUS PA oder Modbus		
Menüsprachen	Messumformer-LCD:	Deutsch, Englisch, Französisch, Spanisch, Russisch, Polnisch		
	HART DD:	Deutsch, Englisch, Französisch, Spanisch, Russisch, Chinesisch, Portugiesisch, Polnisch		
		FOUNDATION Fieldbus™, PROFIBUS PA und Modbus, Host-System: Englisch		
Versorgungsspannung	(an den Messumformerklemmen	HART: Allgmeine Zwecke (wetterfest)/eigensicher/druckfest gekapselt:		
		16 bis 36 VDC		
		11 VDC Minimum unter bestimmten Bedingungen (siehe I&O-Bedienungsanleitung		
		GE 57-606)		
		FOUNDATION Fieldbus™ und PROFIBUS PA: 9 bis 32 VDC		
		FISCO ia / FNICO ic, Druckfest gekapselt, Allgemeine Zwecke und Wetterfest		
		Modbus: 8 bis 30 VDC		
		Druckfest gekapseltes Gehäuse, Nicht Ex Gehäuse, Wetterfest		
Gehäuse				
Werkstoffe		IP67/Aluminiumguss A413 (<0,6 % Kupfer); optional 316 Edelstahl		
Netto-/Bruttogewicht	Aluminium:	2,0 kg		
	316 Edelstahl:	4,50 kg		
Abmessungen		H 212 mm x B 102 mm x T 192 mm		
Kabeleingang		1/2" NPT- oder M20-Anschluss		
SIL 2/3 zertifiziert		SFF-Wert (Safe Failure Fraction) = 93 % (nur HART)		
		Funktionelle Sicherheit gemäß SIL 2/3 als 1001 in Übereinstimmung mit IEC 61508		

TECHNISCHE DATEN - MESSUMFORMER

PHYSIKALISCHE DATEN

Umgebung				
Betriebstemperatur	-40 bis +80 °C; LCD ablesbar -20 bis +70 °	°C		
Lagertemperatur	-45 bis +85 °C			
Relative Luftfeuchtigkeit	0 bis 99 %, nicht kondensierend			
Elektromagnetische Verträglichkeit	Entspricht EG-Anforderungen (EN 61326) und NAMUR NE 21 ①			
Überspannungsschutz	Entspricht CE EN 61326 (1000V)			
Stoß/Vibration	ANSI/ISA-S71.03 Klasse SA1 (Stoß), ANSI/	/ISA-S71.03 Klasse VC2 (Vibration)		
Leistungsdaten				
Referenzbedingungen ②	Reflexion von Flüssigkeit, Epsilonwert in M	itte des gewählten Bereiches,		
	mit einer 1,8-m-Koaxialsonde bei +20 °C, i	m Modus "Auto Threshold"		
Linearität ③ Koaxial-/Bezugsgefäßsonden:	< 0,1% der Sondenlänge oder mindestens	2,5 mm		
Einstab- / Seilsonde in Tanks oder mit Doppelseilsonde:	< 0,3% der Sondenlänge oder mindestens	7,5 m		
Genauigkeit 4 Koaxial-/Bezugsgefäßsonden:	±0,1% der Sondenlänge oder mindestens	±2,5 mm		
Einstab- / Seilsonde in Tanks oder mit Doppelseilsonde:	±0,5% der Sondenlänge oder mindestens	±13 mm		
Trennschichtbetrieb:	Koaxial-/Bezugsgefäßsonden: ±25 mm bei			
	Doppelseilsonden: ±50 mm bei einer Trenn			
Auflösung	±0,1 mm oder 1 Zoll			
Wiederholbarkeit	<2,5 mm			
Hysterese	<2,5 mm			
Ansprechzeit	Ca. 1 Sekunde			
Initialisierungsdauer	Weniger als 10 Sekunden			
Umgebungstemperaturwirkung	Ca. ± 0,02 % der Sondenlänge/°C für Sonden über 2,5 m			
Dielektrizitätsabhängigkeit	<7,5 mm innerhalb des gewählten Bereiches			
FOUNDATION Fieldbus™	7,6 mm milerials add gowariton Borolone			
ITK-Version	6.2.0			
H1-Geräteklasse	Link Master (LAS)—EIN/AUS auswählbar			
H1-Profilklasse	31PS, 32L			
Funktionsblöcke	(8) AI, (3) Sensor, (1) Ressource, (1) Arithme	atik (1) Eingangswahlschalter		
1 UTRIOTSDIOCRE	(1) Signalcharakterisierer, (2) PID, (1) Integra	· · ·		
Duhaatram		atol		
Ruhestrom	15 mA 15 ms (40 ms PID-Block)			
Ausführungszeit	,			
Device Revision	02			
DD Version	0x01			
PROFIBUS PA	0-4044			
Revision	0x101A			
Digitale Kommunikations-protokolle	Version 3.02 MBP (31.25 kbits/sec)			
Funktionsblöcke	(1) × Physical Block, (8) × Al Blocks, (3) ×	Transducer Block		
Ruhestromverbrauch	15 mA	① Stab- und Doppelseilsonden müssen einge-		
Ausführungszeit	15 ms	setzt werden in Metallbehältern oder Schwallrohren, damit die Immunität		
Modbus		gegen Störgeräuschquellen (gemäß EG-Anforderungen) erhalten bleibt.		
Leistungsaufnahme	<0.5W	 Spezifikationen lassen im Modus "Fixed Threshold" nach. 		
Vertrahtung	2 Leiter halb Duplex RS-485 Modbus	3 Die Linearität in den oberen 46 cm von Dop-		
Grundspannung	±7V	pelseil- und Stabsonden in Tanks hängt von der jeweiligen Anwendung ab.		
Bus Terminierung	Nach EIA-485			

	7уТ	7уР
Beschreibung	Standardtemperatur	Hochdruck
Anwendungen	Füllstand / Trennschicht	Füllstand / Trennschicht
Installation	Tank/Bezugsgefäß	Tank/Bezugsgefäß
Überfüllsicher	Ja	Ja
Werkstoffe—Sonde	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)
Dichtungswerkstoffe	Teflon® TFE mit Viton® O-Ringen ①	Hermetische Glaskeramik, Inconel ${\mathbin{\textcircled{\scriptsize 7}}}$
Abstandhalter	Teflon® TFE	Teflon® TFE
Außendurchmesser der Sonde Vergrößert Basisausführung	316 SS: 45 mm Hastelloy: 49 mm Monel: 49 mm 22,5 mm	316 SS: 45 mm Hastelloy: 49 mm Monel: 49 mm 22,5 mm
Prozessanschluss Gewindeanschluss Flanschanschluss	Verlängerte Ausführung: 2" NPT-Gewinde (3/4" NPT oder 1" BSP) Verschiedene ASME-, EN1092- und Patentflansche	Verlängerte Ausführung: 2" NPT-Gewinde (3/4" NPT oder 1" BSP) Verschiedene ASME-, EN1092- und Patentflansche
Erhältliche Sondenlängen Standard Segmentiert	30 bis 610 cm 9 m max, in Teilstücken	30 bis 610 cm 9 m max, in Teilstücken
Übergangszonen ② Oberseite Unten	0 mm $\epsilon_{r} = \text{1,4: 150 mm } \$,$ $\epsilon_{r} = \text{80: 50 mm}$	0 mm $\epsilon_{r} = 1,4: 150 \text{ mm } \$,$ $\epsilon_{r} = 80: 50 \text{ mm}$
Prozesstemperatur	-40 bis +200 °C	-196 bis +200 °C
Max. Betriebsdruck ③	70 bar bei +20 °C	431 bar bei +20 °C
Dielektrizitätskonstante	1,4 bis 100 ®	1,4 bis 100 ®
Vakuumeinsatz 4	Negativer Druck, aber keine hermetische Abdichtung	Vollvakuum
Viskosität Vergrößert Basisausführung	2000cP (mPa.s) 500cP (mPa.s)	2000cP (mPa.s) 500cP (mPa.s)
Ansatzbildung	Filmbildung	Filmbildung

① Andere O-Ringmaterialien auf Anfrage erhältlich.

② Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100 % einzustellen.

³ Siehe Grafik auf Seite 16.

ECLIPSE Sonden mit O-Ringen sind für den Vakuumeinsatz (negativer Druck) geeignet; es sind jedoch nur die Sonden mit Glasdichtung hermetisch dicht bis <10-8 cc/s bei 1 at Helium.

⑤ Kann auf 75 mm verringert werden, wenn eine geringere Genauigkeit zulässig ist.

[®] Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.

To Sonden aus Hastelloy C enthalten eine Inconel 625 bis Hastelloy C Schweißnaht.

	7yD	7yS	
Beschreibung	Hochtemp./Hochdruck	Dampfsonde	
Anwendungen	Füllstand / Trennschicht	Sattdampf	
Installation	Tank/Bezugsgefäß	Tank/Bezugsgefäß	
Überfüllsicher	Ja	Nein ®	
Werkstoffe—Sonde	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C)	
Dichtungswerkstoffe	Hermetische Glaskeramik, Inconel (9	Hermetische Glaskeramik, PEEK HT, Inconel ®	
Abstandhalter	PEEK HT/Keramik	PEEK HT/Keramik	
Außendurchmesser der Sonde Vergrößert Basisausführung	316 SS: 45 mm Hastelloy: 49 mm Monel: 49 mm 22,5 mm	k.A. 22,5 mm	
High-Temp Model 7YS	k.A.	31,8 mm	
Prozessanschluss Gewindeanschluss Flanschanschluss	2" NPT oder 2" BSP Verschiedene ASME-, EN1092- und Patentflansche	3/4" NPT oder 1" BSP ⑦ Verschiedene ASME-, EN1092- und Patentflansche	
Erhältliche Sondenlängen Standard Medium Segmentiert	30 bis 610 cm k.A. 9 m max, in Teilstücken	60 bis 610 cm 60 bis 244 cm 60 bis 305 cm	
Übergangszonen ⊕ Oberseite Unten	0 mm $\epsilon_r = 1,4: 150 \text{ mm} \ \text{@},$ $\epsilon_r = 80: 50 \text{ mm}$	200 mm $\varepsilon_{\rm r}$ = 80: 50 mm	
Prozesstemperatur	-196 bis 450 °C	-50 bis +425 °C ®	
Max. Betriebsdruck®	431 bar bei +20 °C	207 bar @ +20 °C 155 bar @ +345 °C	
Dielektrizitätskonstante	1,4 bis 100 ®	10 bis 100	
Vakuumeinsatz ®	Vollvakuum	Vollvakuum	
Viskosität Vergrößert Basisausführung	2000cP (mPa.s) 500cP (mPa.s)	k.A. 500cP (mPa.s)	
Ansatzbildung	Filmbildung	Filmbildung	

Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100 % einzustellen.

② Siehe Grafik auf Seite 16.

[®] ECLIPSE Sonden mit O-Ringen sind für den Vakuumeinsatz (negativer Druck) geeignet; es sind jedoch nur die Sonden mit Glasdichtung hermetisch dicht bis <10-8 cc/s bei 1 at Helium.</p>

 $[\]ensuremath{\textcircled{4}}$ Kann auf 75 mm verringert werden, wenn eine geringere Genauigkeit zulässig ist.

⑤ Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.

[®] Wenden Sie sich bei Fragen zu Überfüllanwendungen an den Hersteller.

 $[\]ensuremath{{\mathbb O}}$ Nicht erhältlich für Hochtemperatur Version der 7yS Sonde.

[®] Bei Installation in einem Bypassgefäß.

[®] Sonden aus Hastelloy C enthalten eine Inconel 625 bis Hastelloy C Schweißnaht.

BEZUGSGEFÄSSSONDEN - MATRIX

	7yG	7yL	7yJ
Beschreibung	Standardtemperatur	Hochdruck	Hochtemp./Hochdruck
Anwendungen	Füllstand / Trennschicht	Füllstand / Trennschicht	Füllstand / Trennschicht
Installation	Bezugsgefäß	Bezugsgefäß	Bezugsgefäß
Überfüllsicher ⑦	Ja	Ja	Ja
Werkstoffe—Sonde	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)
Dichtungswerkstoffe	Teflon® TFE mit Viton® O-Ringen ①	Hermetische Glaskeramik, Inconel ®	Hermetische Glaskeramik, Inconel ®
Abstandhalter	PEEK	PEEK	PEEK HT/Celazol
Außendurchmesser der Sonde 2-Zoll-Bezugsgefäß 3-Zoll-Bezugsgefäß 4-Zoll-Bezugsgefäß	13 mm bis 19 mm 19 mm bis 29 mm 27 mm bis 38 mm	13 mm bis 19 mm 19 mm bis 29 mm 27 mm bis 38 mm	13 mm bis 19 mm 19 mm bis 29 mm 27 mm bis 38 mm
Prozessanschluss Flanschanschluss	Verschiedene ASME-, EN1092- und Patentflansche	Verschiedene ASME-, EN1092- und Patentflansche	Verschiedene ASME-, EN1092- und Patentflansche
Erhältliche Sondenlängen	30 bis 610 cm	30 bis 610 cm	30 bis 610 cm
Übergangszonen ② Oberseite Unten	0 mm $\epsilon_r = 1.4: 150 \text{ mm } \text$	0 mm $\epsilon_r = 1,4: 150 \text{ mm } \text$	0 mm $\epsilon_{\rm r} = \text{1,4: 150 mm } \$,$ $\epsilon_{\rm r} = \text{80: 50 mm}$
Prozesstemperatur	-40 bis +200 °C	-196 bis +200 °C	-196 bis 450 °C
Max. Betriebsdruck ③	70 bar bei +20 °C	431 bar bei +20 °C	431 bar bei +20 °C
Dielektrizitätskonstante ⑦	1,4 bis 100 ®	1,4 bis 100 ®	1,4 bis 100 ®
Vakuumeinsatz 4	Negativer Druck, aber keine hermetische Abdichtung	Vollvakuum	Vollvakuum
Viskosität	10.000cP (mPa.s)	10.000cP (mPa.s)	10.000cP (mPa.s)
Ansatzbildung	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)

 $[\]ensuremath{\textcircled{1}}$ Andere O-Ringmaterialien auf Anfrage erhältlich.

② Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100% einzustellen.

³ Siehe Grafik auf Seite 16.

⑤ Kann auf 75 mm verringert werden, wenn eine geringere Genauigkeit zulässig ist.

⑥ Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.

 $^{{\}it @}$ Bei Installation im korrekten Bezugsgefäß/Schwallrohr.

[®] Sonden aus Hastelloy C enthalten eine Inconel 625 bis Hastelloy C Schweißnaht.

	7yF	7y M	7yN
Beschreibung	Standardtemperatur	Hochdruck	Hochtemp./Hochdruck
Anwendungen	Füllstand	Füllstand	Füllstand
Installation	Tank	Tank	Tank
Überfüllsicher ⑦	Nein	Nein	Nein
Werkstoffe —Sonde	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®) PFA-vollisolierter 316/316L Stab	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)	Edelstahl 1.4401/1.4404 (316/316L SST) 2.4819 (Hastelloy® C) 2.4360 (Monel®)
Dichtungswerkstoffe	Teflon® TFE mit Viton® O-Ringen ①	Hermetische Glaskeramik, Inconei ®	Hermetische Glaskeramik, Inconel ®
Abstandhalter	Keine	Keine	PEEK HT/Celazol
Außendurchmesser der Sonde	Blanke Sonde: 10 mm Stab Beschichtung: 16 mm Stab	Blanke Sonde: 10 mm Stab	Blanke Sonde: 13 mm Stab
Prozessanschluss Gewindeanschluss Flanschanschluss	1" oder 2" (NPT- oder BSP-Ge- winde) Verschiedene ASME-, EN1092- und Patentflansche	1" oder 2" (NPT- oder BSP-Ge- winde) Verschiedene ASME-, EN1092- und Patentflansche	2" (NPT oder BSP) Verschiedene ASME-, EN1092- und Patentflansche
Erhältliche Sondenlängen	60 bis 732 cm maximal 610 cm für PFA beschichtete Sonden	60 bis 732 cm	60 bis 732 cm
Übergangszonen ② Oberseite Unten	Anwendungsabhängig $\epsilon_{\rm r} = 1.4 {:}~150~{\rm mm}~{\rm \$},$ $\epsilon_{\rm r} = 80 {:}~50~{\rm mm}$	Anwendungsabhängig $\epsilon_{r} = 1.4 \colon 150 \text{ mm } \$,$ $\epsilon_{r} = 80 \colon 50 \text{ mm}$	Anwendungsabhängig $\epsilon_{r} = 1.4 \colon 150 \text{ mm } \$,$ $\epsilon_{r} = 80 \colon 50 \text{ mm}$
Prozesstemperatur	-40 bis +200 °C	-196 bis +200 °C	-196 bis 450 °C
Max. Betriebsdruck ③	70 bar bei +20 °C	431 bar bei +20 °C	431 bar bei +20 °C
Dielektrizitätskonstante	1,7 bis 100 ®	1,7 bis 100 ®	1,7 bis 100 ®
Vakuumeinsatz ④	Negativer Druck, aber keine her- metische Abdichtung	Vollvakuum	Vollvakuum
Viskosität	10.000cP (mPa.s)	10.000cP (mPa.s)	10.000cP (mPa.s)
Ansatzbildung	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)

 $[\]ensuremath{\textcircled{1}}$ Andere O-Ringmaterialien auf Anfrage erhältlich.

② Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100% einzustellen.

³ Siehe Grafik auf Seite 16.

⑤ Kann auf 75 mm verringert werden, wenn eine geringere Genauigkeit zulässig ist.

⑥ Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.

Die Überfüllsicherung kann über die Software realisiert werden.

[®] Sonden aus Hastelloy C enthalten eine Inconel 625 bis Hastelloy C Schweißnaht.

SEILSONDEN FÜR FLÜSSIGKEITEN - MATRIX

	7y1	7y3	
Beschreibung	Seilsonde Standardtemperatur	Seilsonde Hochtemp./Hochdruck	
Anwendungen	Füllstand	Füllstand	
Installation	Tank	Tank	
Überfüllsicher ®	Nein	Nein	
Werkstoffe—Kabel	316 (1.4401) (optional PFA Beschichtung)	316 (1.4401)	
Dichtungswerkstoffe	Teflon® TFE mit Viton® O-Ringen ①	Hermetische Glaskeramik, Inconel 🗇	
Außendurchmesser der Sonde	5 mm	5 mm	
Prozessanschluss Gewindeanschluss Flanschanschluss	2" NPT oder 2" BSP Verschiedene ASME-, EN1092- und Patentflansche	2" NPT oder 2" BSP Verschiedene ASME-, EN1092- und Patentflansche	
Erhältliche Sondenlängen	1 bis 30 m	1 bis 30 m	
Übergangszonen ② Oberseite Unten	45 cm 30 cm	45 cm 30 cm	
Prozesstemperatur	-40 bis +200 °C	-196 bis 200 °C	
Max. Betriebsdruck ③	70 bar bei +20 °C	431 bar bei +20 °C	
Dielektrizitätskonstante ®	1,7 bis 100	1,7 bis 100	
Vakuumeinsatz ®	Negativer Druck, aber keine hermetische Abdichtung	Vollvakuum	
Viskosität	10.000 (mPa.s)	10.000 (mPa.s)	
Ansatzbildung	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	

 $[\]ensuremath{\textcircled{1}}$ Andere O-Ringmaterialien auf Anfrage erhältlich.

② Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100% einzustellen.

³ Siehe Grafik auf Seite 16.

⑤ Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.

[©] Die Überfüllsicherung kann über die Software realisiert werden.

To Sonden aus Hastelloy C enthalten eine Inconel 625 bis Hastelloy C Schweißnaht.

SEILSONDEN FÜR FLÜSSIGKEITEN - MATRIX

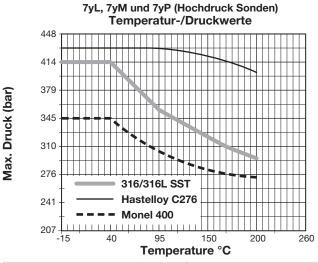
	7y 6	7y7	
Beschreibung	Seilsonde Hochtemp./Hochdruck	Doppelseilsonde Standardtemperatur	
Anwendungen	Füllstand	Füllstand / Trennschicht	
Installation	Tank/Bezugsgefäß	Tank/Bezugsgefäß	
Überfüllsicher	Nein	Nein	
Werkstoffe—Kabel	316 (1.4401)	316 SS (1.4401) Kabel mit FEP-Gewebe	
Dichtungswerkstoffe ①	Hermetische Glaskeramik, Inconel ⑥	Teflon® TFE mit Viton® O-Ringen	
Außendurchmesser des Kabels	5 mm	(2) 6 mm	
Prozessanschluss Gewindeanschluss Flanschanschluss	2" NPT oder 2" BSP Verschiedene ASME-, EN- und Patentflansche	2" NPT oder 2" BSP Verschiedene ASME-, EN- und Patentflansche	
Erhältliche Sondenlängen	1 bis 30 m	1 bis 30 m	
Übergangszonen ② Oberseite Unten	45 cm 30 cm	45 cm 30 cm	
Prozesstemperatur	-196 bis 450 °C	-40 bis +200 °C	
Max. Betriebsdruck ③	431 bar bei +20 °C	70 bar bei +20 °C	
Dielektrizitätskonstante 5	1,7 bis 100	1,7 bis 100	
Vakuumeinsatz 4	Vollvakuum	Negativer Druck, aber keine hermetische Abdichtung	
Viskosität	10.000 (mPa.s)	1500 (mPa.s)	
Ansatzbildung	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Maximaler Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	

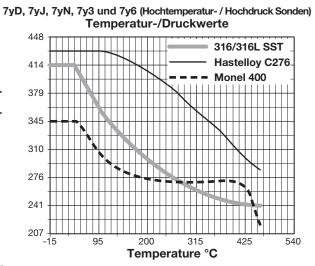
① Andere O-Ringmaterialien auf Anfrage erhältlich.

[©] Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100 % einzustellen.

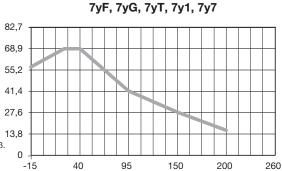
³ Siehe Grafik auf Seite 16.

⑤ Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.


[®] Sonden aus Hastelloy C enthalten eine Inconel 625 bis Hastelloy C Schweißnaht.


SEILSONDEN FÜR FESTSTOFFE – MATRIX

	7y2	7y5		
Beschreibung	Seilsonde Standardtemp.	Doppelseilsonde Standardtemp.		
Anwendungen	Füllstand	Füllstand		
Installation	Tank	Tank		
Überfüllsicher	Nein	Nein		
Zugkraft	1360 kg	1360 kg		
Werkstoffe—Kabel	316 (1.4401)	316 (1.4401)		
Außendurchmesser der Sonde	5 mm	(2) 6 mm		
Prozessanschluss				
Gewindeanschluss	2" NPT oder 2" BSP	2" NPT oder 2" BSP		
Flanschanschluss	Verschiedene ASME-, EN1092- und Patentflansche	Verschiedene ASME-, EN1092- und Patentflansche		
Erhältliche Sondenlängen	1 bis 30 m	1 bis 30 m		
Übergangszonen ①				
Oberseite	45 cm	45 cm		
Unten	30 cm	30 cm		
Dielektrizitätskonstante ②	1.7 bis 100	1,7 bis 100		
Vakuumeinsatz ③	Negativer Druck, aber keine hermetische Abdichtung	Negativer Druck, aber keine hermetische Abdichtung		
Viskosität	10.000 (mPa.s)	10.000 (mPa.s)		
Ansatzbildung	Max. Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)	Max. Fehler von 10 % der Länge der Ansatzbildung (% Fehler abhängig von Epsilonwert und Dicke)		


- ① Übergangszonen (Bereiche mit verringerter Genauigkeit) sind dielektrizitätsabhängig. Es wird empfohlen, außerhalb von Übergangszonen einen Messbereich von 0-100 % einzustellen.
- 2 Minimaler Epsilonwert von 1,2 bei aktiviertem Ende der Sondenanalyse.
- ® ECLIPSE Sonden mit O-Ringen sind für den Vakuurmeinsatz (negativer Druck) geeignet; es sind jedoch nur die Sonden mit Glasdichtung hermetisch dicht (Heliumaustritt <108 cc/s bei 1 at).

Max. Druck (bar)

	Hochdrucksonden				Hochdrucksonden				Niederdruck
Temp.	SST	Hastelloy	Monel	Alle Materialien	Тетр.	SST	Hastelloy	Monel	Alle Materialien
-40	6000	6250	5000	750	315	3760	5040	3940	_
20	6000	6250	5000	1000	345	3680	4905	3940	_
40	6000	6250	5000	1000	370	3620	4730	3920	_
95	5160	6250	4380	650	400	3560	4430	3880	_
150	4660	6070	4080	400	425	3520	4230	3820	_
200	4280	5820	3940	270	450	3480	4060	3145	_
260	3980	5540	3940	_					

HINWEISE:

- 7yS Dampfsonden sind für 207 bar bei bis zu +425 °C ausgelegt wenn Installation in einem seitlichen Bezugsgefäß.
- 7y3, 7y6 Hochtemp./Hochdruck-Seilsonden:
 Der Druck ist durch das Bezugsgefäß begrenzt
- 7y2, 7y5 Schüttgütersonden: 3,45 bar bis +65 °C
- Hochdrucksonden mit Gewindeanschlüssen sind wie folgt bemessen:
 Die Sonden 7yD, 7yN, 7yP und 7y3 mit Gewindeanschlüssen sind für 248 bar ausgelegt. 7yM Sonden mit Gewindeanschlüssen sind für 139 bar ausgelegt.
- Maximaler Druck für 1" NPT oder 1" BSP:
- 316 SST Sonde: 139 bar (2016 psi) Hast. C276 Sonde: 145 bar (2100 psi) Model Sonde: 116bar (1680 psi)
- Maximaler Druck für 2" NPT oder 2" BSP:
- 316 SST Sonde: 414 bar (6000 psi) Hast. C276 Sonde: 431 bar (6250 psi) Model Sonde: 345 bar (5000 psi)

O-RING (DICHTUNG) - AUSWAHLTABELLE

O-RING/DICHTUNG – TECHNISCHE DATEN

Code	O-Ring/Dich- tungspaket Werkstoffe	Max. Prozesstem- peratur	Min. Prozess- temperatur	Max. Be- triebsdruck	Nicht empfohlene Anwendungen	Empfohlene Anwendungen
0	Viton [®] GFLT	200 °C bei 16 bar	-40 °C	70 bar bei +20 °C	Ketone (MEK, Aceton), Skydrol-Fluide, Amine, Ammoniakanhydrid, niedermolekulare Ester und Ether, heiße Fluss- oder Chlorsulfonsäuren, saure Kohlenwasserstoffe	Allgemeine Zwecke, Ethylen
1	EPDM	120 °C bei 14 bar	-50 °C	70 bar bei +20 °C	Petroleumöle, Schmiermittel auf Di-Ester-Basis, Dampf	Aceton, MEK, Skydrol-Fluids
2	Kalrez® 4079	200 °C bei 16 bar	-40 °C	70 bar bei +20 °C	Heißwasser/Dampf, heiße aliphatische Amine, Ethylenoxid, Propylenoxid	Anorganische und organische Säuren (einschließlich Hydraulikfluids und Salpetersäure), Aldehyde, Ethylen, organische Öle, Glykole, Silikonöle, Essig, saure Kohlenwasserstoffe
3	HSN (Hoch gesättigtes Nitril)	+135 °C bei 22 bar	-20 °C	70 bar bei +20 °C	Halogenkohlenwasserstoffe, Nitro-Kohlenwasserstoffe, Phosphatester-Hydraulik- fluids, Ketone (MEK, Aceton), starke Säuren, Ozon, Kfz- Bremsflüssigkeit, Dampf	NACE-Anwendungen
4	Buna-N	+135 °C bei 22 bar	-20 °C	70 bar bei +20 °C	Halogenkohlenwasserstoffe, Nitro-Kohlenwasserstoffe, Phosphatester-Hydraulik- fluids, Ketone (MEK, Aceton), starke Säuren, Ozon, Kfz- Bremsflüssigkeit	Allzweckdichtmittel, Erdöle und - fluids, kaltes Wasser, Silikonfette und -öle, Schmiermittel auf Di- Ester-Basis, Fluids auf Ethylenglykol-Basis
5	Neoprene®	120 °C @ 20 bar (250 °F @ 290 psi)	-55 °C	70 bar bei +20 °C	Phosphatesterfluids, Ketone (MEK, Aceton)	Kältemittel, Erdöle mit hohem Anilinpunkt, Silikatester- Schmiermittel
6	Chemraz [®] 505	+200 °C bei 14 bar	-30 °C	70 bar bei +20 °C	Acetaldehyd, Ammoniak + Lithium-Metall-Lösung, Butyraldehyd, Di-Wasser, Frigen (Freon), Ethylenoxid, Laugen, Isobutyraldehyd	Anorganische und organische Säuren, Alkaline, Ketone, Ester, Aldehyde, Kraftstoffe
7	Polyurethan	+95 °C bei 29 bar	-55 °C	70 bar bei +20 °C	Säuren, Ketone, chlorierte Kohlenwasserstoffe	Hydrauliksysteme, Erdöle, HC- Brennstoff, Sauerstoff, Ozon
8	Simriz SZ485 (früher Aegis PF128) ①	+200 °C bei 16 bar	-20 °C	70 bar bei +20 °C	Schwarzlauge, Freon 43, Freon 75, Galden, KEL-F- Flüssigkeit, Schmelznatrium, Schmelzkalium	Anorganische und organische Säuren (einschließlich Hydraulikfluids und Salpetersäure), Aldehyde, Ethylen, Glykole, organische Öle, Silikonöle, Essig, saure Kohlenwasserstoffe, Dampf, Amine, Ethylenoxid, Propylenoxid, NACE- Anwendungen
А	Kalrez [®] 6375	+200 °C bei 16 bar	-40 °C	70 bar bei +20 °C	Heißwasser/Dampf, heiße aliphatische Amine	Anorganische und organische Säuren (einschließlich Hydraulikfluids und Salpetersäure), Aldehyde, Ethylen, organische Öle, Glykole, Silikonöle, Essig, saure Kohlenwasserstoffe, Ethylenoxid, Propylenoxid
В	Kalrez [®] 6375	200 °C bei 16 bar	-40 °C	70 bar bei +20 °C	Heißwasser/Dampf, heiße aliphatische Amine, Ethylenoxid, Propylenoxid	Flusssäure
D oder N	Glaskeramik- Legierung	+450 °C bei 248 bar	-195 °C	431 bar bei +20 °C	Heiße alkalische Lösungen, Flusssäure, Medien mit pH- Wert > 12, direkter Kontakt mit Sattdampf	Allgemeine Hochtem- peratur/Hochdruck-Anwendungen, Kohlenwasserstoffe, Vollvakuum (hermetisch), Ammoniak, Chlor

AUSTAUSCH VON VERDRÄNGERMESSUMFORMERN

Der ECLIPSE hat sich als der ideale Ersatz für vorhandene "Torque-Tube"-Verdränger-Messumformer erwiesen. In weltweit zahlreichen Anwendungen haben Kunden befunden, dass die Leistung der EC-LIPSE GWR-Füllstandmessumformer (Guided Wave Radar) die der "Torque-Tube"-Messumformer übertrifft.

Die Verwendung des Eclipse Modells 706 als Ersatz für "Torque-Tube"-Messumformer bietet mehrere Vorteile:

· Kosten:

Die Kosten eines neuen Messumformers des Modells 706 sind mit denen für die Aufbereitung eines alten "Torque-Tube"-Messumformers vergleichbar.

• Installation:

Eine Kalibrierung vor Ort ist nicht erforderlich. Der Messumformer des Modells 706 kann in wenigen Minuten ohne Änderung des Füllstands konfiguriert werden. (Eine komplette werkseitige Konfiguration ist möglich, wodurch der Installationsaufwand noch weiter verringert werden kann).

• Leistung:

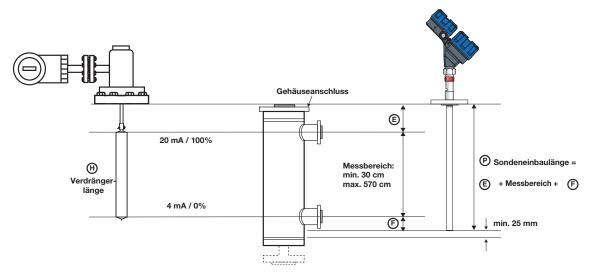
Das ECLIPSE Modell 706 wird nicht von Änderungen der Dichte beeinflusst und hat keinerlei beweglichen Teile, die verschleißen können und deren Toleranz verloren gehen kann.

• Einfacher Austausch:

Für alle ECLIPSE Sonden des Modell 706 sind Patent- und dem ASME-Standard entsprechende Flansche erhältlich, so dass vorhandene Bezugsgefäße verwendet werden können.Um den korrekten ECLIPSE Messumformer mit dem korrekten externen Bezugsgefäß zu kombinieren, muss Folgendes berücksichtigt werden:

• Art der Anwendung:

Verwenden Sie die für die jeweilige Anwendung korrekte GWR-Sonde; siehe auch Seiten 7 und 10 bis 16.

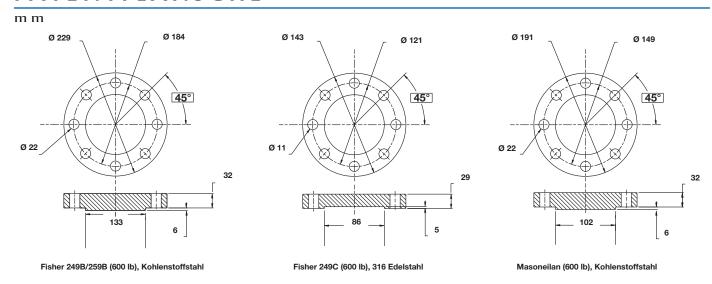

• Überfüllsicherung:

Verwenden Sie in allen Anwendungen mit externem Bezugsgefäß für eine optimale Leistung eine überfüllsichere Sonde.

Hinweis: Eine Überfüllung tritt ein, wenn der Füllstand den maximalen Betriebsbereich übersteigt. Einige GWR-Sonden können in dieser Zone fehlerbafte Werte ausgeben, wenn kein optimaler, impedanzangepasstes Design verwendet wird.

• Minimale Bezugsgefäßgröße:

- Koaxialsonden oder Koaxial-/Bezugsgefäßsonden: 2 Zoll Minimum
- Vergrößert Koaxialsonden: 3 Zoll Minimum
- Doppelseilsonden: 4 Zoll Minimum


Empfohlene Sondenlänge für den Austausch von Verdrängermessumformern

Die folgende Tabelle hilft, die GWR-Sondenlänge für die gängigsten Verdrängermessumformer zu definieren. Siehe auch Leitfaden zur Patentflanschauswahl.

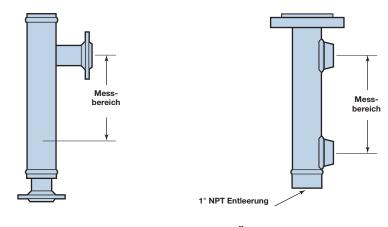
Hersteller	Тур	Prozessanschluss	Verdrängerlänge mm	Sondenlänge ① mm
MAGNETROL	EZ und PN Modulevel®	ASME/EN-Flansch	≥ 356	Verdränger +178
Masoneilan®	Serie 1200	Patentflansch	≥ 356	Verdränger +203
IVIASOTIEIIATI	Serie 1200	ASME/EN-Flansch	≥ 406	Verdränger +203
Fisher®-Serie	Bezugsgefäße 249B, 259B, 249C	Patentflansch	≥ 356	Verdränger +254
2300 und 2500	andere Bezugsgefäße	ASME-Flansch	≥ 356	auf Anfrage
Eckardt®	Serie 134, 144	ASME/EN-Flansch	≥ 356	auf Anfrage
Tokyo Keiso®	FST-3000 ASME/EN-Flansch		H = 300	Verdränger +229
I TOKYO KEISO®	FS1-3000	ASME/EN-Flansch	≥ H = 500	Verdränger +229

① Rechenergebnis auf den nächsten cm-Wert abrunden.

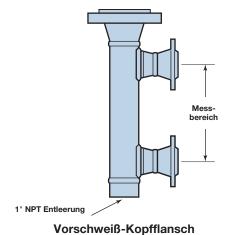
PATENTFLANSCHE

MAGNETROL BEZUGSGEFÄSSE

Nachfolgend ist eine kurze Beschreibung des MAGNETROL Sortiments an Bezugsgefäßen aufgeführt. Nähere Angaben können der Technische Information GE 57-140 von MAGNETROL entnommen werden.


MAGNETROL verfügt über langjährige Erfahrungen im Bau kostengünstiger Bezugsgefäße. Das externe MAGNETROL Bezugsgefäß ist getrennt, so dass es mit unseren von oben zu montierenden Füllstandmessumformern oder -grenzschaltern eingesetzt werden kann. Durch die hochwertige Konstruktion und eine breite Auswahl an Konfigurationen eignet sich dieses Bezugsgefäß ideal für den Einsatz mit der GWR-Technologie. Dabei braucht es nicht direkt in den Prozessbehälter eingebaut zu werden.

MAGNETROL Bezugsgefäße sind mit einer Vielzahl von Optionen erhältlich und können so gefertigt werden, dass sie die Anforderungen verschiedener Vorschriften erfüllen:


- Gewerbliche Konstruktion
- ASME B31.1 Konstruktionscode
- ASME B31.3 Konstruktionscode
- NACE Konstruktionscode
- PED

Einige Sonden des Modells 706 Sonden können in Bezugsgefäßen installiert werden, die nur 2" klein sind. Wenn ein neues Bezugsgefäß benötigt wird, kann es zusammen mit einem vom Hersteller vorkonfigurierten Modell 706 bestellt werden, so dass eine tatsächliche Plug-and-Play-Installation möglich ist.

Gekapseltes Bezugsgefäß

Überschieb-Kopfflansch

-

Die Geräte sind konform gemäß EMC-Richtlinie 2014/30/EU. PED-Richtlinie 2014/68/EU und der ATEX-Richtlinie 2014/34/EU.

Explosionssicher (mit eigensicherer Sonde)

US/Canada:

Klasse I, Div 1, Gruppen B, C und D, T4 Klasse I, Zone 1 AEx db/ia [ia IIC Ga] IIB + H2 T4 Gb/Ga Klasse I, Zone 1 Ex db/ia [ia IIC Ga] IIB + H2 T4 Gb/Ga Ta = -40 $^{\circ}$ C bis +70 $^{\circ}$ C Typ 4X, IP67

Flame Proof

ATEX – FM14ATEX0041X: II 2/1 G Ex db/ia [ia IIC Ga] IIB + H2 T6 bis T1 Gb/Ga Ta = -40 $^{\circ}$ C bis +70 $^{\circ}$ C IP67

IEC- IECEx FMG 14.0018X:

Ex db/ia [ia IIC Ga] IIB + H2 T6 bis T1 Gb/Ga Ta = -40 °C bis +70 °C IP67

Eigensicher

US/Canada:

Klasse I, II, III, Div 1, Gruppen A, B, C, D, E, F, G, T4 Klasse I, Zone 0 AEx ia IIC T4 Ga Klasse I, Zone 0 Ex ia IIC T4 Ga Ta =-40 °C bis + 70 °C Typ 4X, IP67

ATEX - FM14ATEX0041X:

II 1 G Ex ia IIC T4 Ga Ta = -40 °C bis +70 °C IP67

IEC - IECEx FMG 14.0018X:

Ex ia IIC T4 Ga Ta = -40 °C bis +70 °C IP67

Non incendive (Nicht funkend):

US/Canada:

US: Klasse I, II, III, Division 2, Gruppen A, B, C, D, E, F, G, T4 Canada: Klasse I, Division 2, Gruppen A, B, C, D Klasse I, Zone 2 AEx nA [ia Ga] IIC T4 Gc Klasse I, Zone 2 Ex nA [ia Ga] IIC T4 Gc Ta = -40 °C bis +70 °C Typ 4X, IP67

ATEX

II 3 (1) G Ex nA [ia Ga] IIC T4 Gc Ta = -15 °C bis +70 °C IP67

IEC - IECEx FMG 14.00018X:

Ex nA [ia Ga] IIC T4 Ga/Gc Ta = -15 °C bis + 70 °C IP67

Staubexplosionsschutz

US/Canada:

Klasse II, III, Division 1, Gruppen E, F und G, T4 Ta = -40 °C bis +70 °C Typ 4X, IP67

ATEX - FM14ATEX0041X:

II 1/2 D Ex ia/tb [ia Da] IIIC T85 °C bis T450 °C Da/Db Ta = -15 °C bis +70 °C IP67

IEC - IECEx FMG 14.0018X:

Ex ia tb [ia Da] IIIC T85 °C bis T450 °C Db Ex ia IIIC T85 °C bis T450 °C Da Ta = -15 °C bis +70 °C IP67

Die folgenden Zulassungsnormen kommen zur Anwendung:

FM3600:2018, FM3610:2010, FM3611:2018, FM3615:2018, FM3616:2011, FM3810:2018, UL60079-0:2019, UL 60079-1:2015, ANSI/ISA 60079-11:2014, ANSI/ISA 60079-15:2012, ANSI/ISA 60079-26:2014, ANSI/ISA 250:2003, ANSI/IEC 60529:2004, ANSI/UL 61010:2015, CSA-C22.2 No. 0.4:2009, CSA-C22.2 No. 0.5:2008, CSA-C22.2 No. 25:2009, CSA-C22.2 No. 30:2007, CSA-C22.2 No. 94:2001, CSA-C22.2 No. 157:2012, CSA-C22.2 No. 213:2012, CSA-C22.2 No. 1010.1:2009 CAN/CSA 60079-0:2019, CAN/CSA 60079-1:2016 CAN/CSA 60079-11:2011 CAN/CSA 60079-15:2012 C22.2 No. 60529:R2010, ANSI/ISA 12.27.01, EN/IEC60079-0:2018, EN60079-1:2014, EN60079-11:2012, EN60079-15:2010, EN60079-26:2015, EN60079-31:2014, EN60529+A1:1991-2000, IEC60079-0:2011, IEC60079-1:2014, IEC60079-11:2011, IEC60079-15:2010, IEC60079-26:2006, IEC60079-31:2008, ANSI/ISA 12.27.01:2011, ANSI/UL 61010:2015

Lloyd´s Register LR Zulassung - Marine-, Offshore- und Industrieanwendungen zur Verwendung in den Umweltkategorien ENV 1, 2 und 5 gemäß Definition in der Typgenehmigungsprüfspezifikation Nr. 1 (2015).

Lloyd´s Register Dampftrommelzulassung - EN 12953-9 und EN 12951-11

Besondere Bedingungen für eine sichere Anwendung

- Weil das Gehäuse des GWR-Füllstandmessumformers aus Aluminium gefertigt ist, muss dieser bei Verwendung so errichtet werden, dass Zündquellen durch Schlag- und Reibfunken, sogar bei selten auftretenden Betriebsstörungen, ausgeschlossen sind.
- 2. Vermeiden Sie unbedingt elektrostatische Auflösung jeglicher Form. Sehen Sie hierzu Hinweise in der Betriebsanleitung.
- 3. Kontaktieren Sie den Hersteller für die Abmessungen der Flammendurchschlagssperre.
- 4. Für Installationen in einer Umgebungstemperatur von +70 °C verwenden Sie bitte nach Herstellerangabe hitzebeständige Anschlusskabel.
- 5. WARNUNG—Explosionsgefahr: Das Gerät niemals innerhalb einer explosionsgefährdeten Atmosphäre zerlegen.
- 6. Für den Einsatz in IEC oder ATEX Bereichen: Um die T1 bis T6 Temperaturklassen einzuhalten, stellen Sie sicher das die Gehäusetemperatur +70 °C nicht überschreitet.
- 7. Für USA und Kanada: Um die T4 Temperaturklasse einzuhalten, stellen Sie sicher das die Gehäusetemperatur +70 °C nicht überschreitet.
- 8. Temperaturklassen für Ex db/ia [ia IIC] IIB+H2 und Ex ia/tb [ia] IIIC entnehmen Sie bitte unten stehender Tabelle:

Prozesstemperatur (PT)	Temperatur Code -TCG (GAS)	Temperatur Code -TCD (Staub)
Bis zu 75 °C	T6	TCD= PT+10K=85 °C
Von 75 °C bis 90 °C	T5	TCD= PT+10K=100 °C
Von 90 °C bis 120 °C	T4	TCD= PT+15K=135 °C
Von 125 °C bis 185 °C	Т3	TCD= PT+15K=200 °C
Von 185 °C bis 285 °C	T2	TCD= PT+15K=300 °C
Von 285 °C bis 435 °C	T1	TCD= PT+15K=450 °C

- 9. Zünddurchschlagsichere Verbindungen dürfen nicht repariert werden.
- 10. Der Transmitter Modell 706 mit Adapter darf nur für Baugruppen mit FM-Zulassung Modell 705 verwendet werden.

ZUSÄTZLICHE NUTZUNGSBEDINGUNGEN:

11. Es sind Vorkehrungen zu treffen, um einen vorübergehenden Überspannungsschutz bis zu einer Höhe von 119 V DC zu gewährleisten.

Zulassungskriterien bei einer druckfest gekapselten Installation (FM)

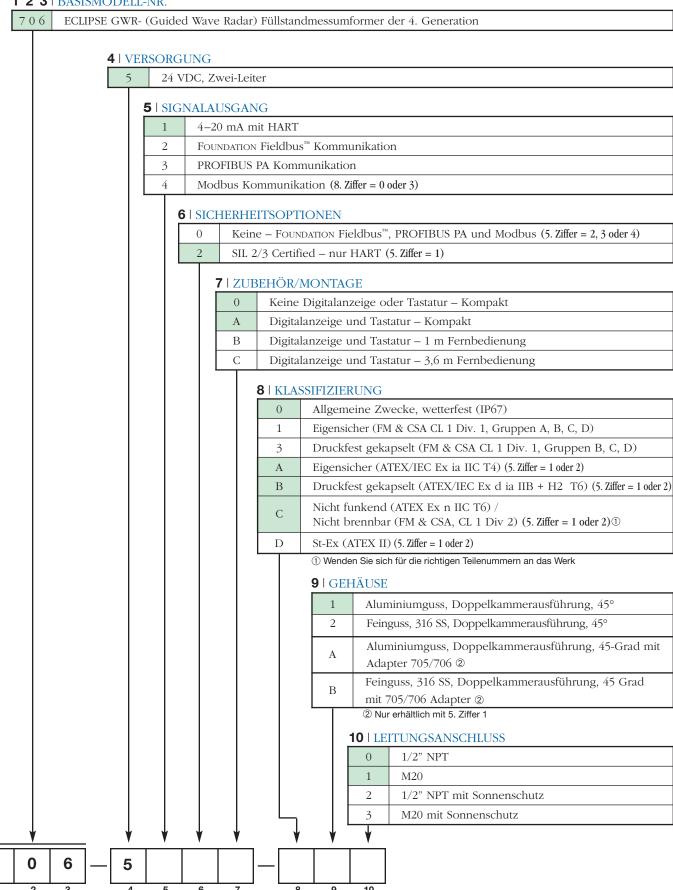
Werkseitig gekapselt: Dieses Produkt ist durch die "Factory Mutal Research" (FM) und die "Canadian Standards Association" (CSA) als werksseitig gekapselt zugelassen.

Anmerkung: Werkseitig gekapselt: Innerhalb der ersten 45 cm (18") ist kein Flammendurchschlagschutz (Vergussmuffe) erforderlich. Einen Flammendurchschlagschutz (Vergussmuffe) ist zwischen Ex und nicht Ex Bereichen erforderlich.

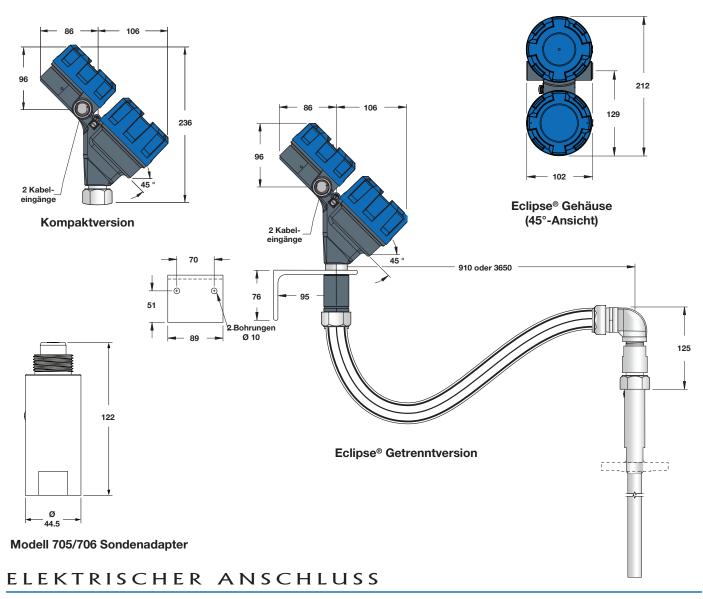
LEVERINGSPLAN "QUICK RESPONSE CELL (QRC)

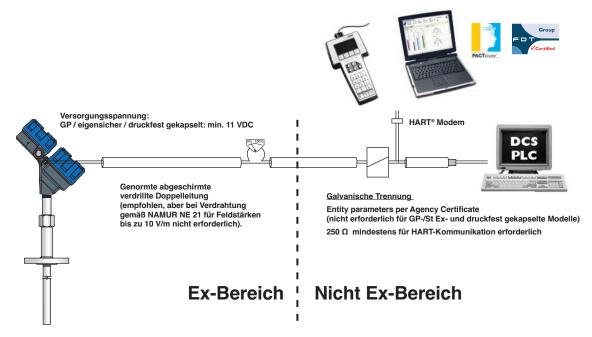
Verschiedene Modelle sind für die besonders snelle Lieferunginnerhalb von max. 15 Werktagen nach technisch und kommerziell klaren Bestelleingang verfügbar (QRC: Quick Response Cell). Um die Vorteile von QRC zu nutzen, stellen Sie einfach einen Bestellcode aus den grün hinterlegten Modellnummer-Codes zusammen.

Die Lieferung von QRC ist auf maximal 10 Einheiten pro Bestellung beschränkt. Wenden Sie sich für größere Mengen oder andere Liefervereinbarungen sowie Anwendungsfragen an Ihre lokale Vertretung.


LEVERINGSPLAN "EXPEDITE SHIP PLAN" (ESP)

Verschiedene Modelle sind für bevorzugte Lieferung innerhalb von max. 4 Wochen nach technisch und kommerziell klarem Bestelleingang verfügbar (ESP: Expedite Ship Plan). Um die Vorteile von ESP zu nutzen, stellen Sie einfach einen Bestellcode aus den blau hinterlegten (oder eine Kombination aus blau und grün hinterlegten) Modellnummer-Codes zusammen.


Der ESP-Lieferung ist auf höchstens 10 Einheiten pro Bestellung begrenzt. Lieferzeiten für Aufträge mit höheren Stückzahlen sowie Informationen zu weiteren Produkten und Optionen erfahren Sie auf Anfrage.


MESSUMFORMER

1 2 3 | BASISMODELL-NR.

m m

VERGRÖSSERTE KOAXIALSONDE

1 | FUNKTIONSPRINZIP

7	ECLIPSE GWR-Sonden – Modell 706
---	---------------------------------

2 | MESSSYSTEM

A	Englisch (Inch)
С	Metrisch (Zentimeter)

3 | KONFIGURATION STARR

D	Vergrößerte Koaxialsonde, Hochtemp./Hochdruck: Überfüllschutz mit Glasdichtung (+450 °C) — Nur erhältlich mit 10. Ziffer N oder D
P	Vergrößerte Koaxialsonde, Hochdruck: Überfüllschutz mit Glasdichtung (+200 °C) — Nur erhältlich mit 10. Ziffer N oder D
Т	Vergrößerte Koaxialsonde, Überfüllsicherung, standardm. O-Ringdichtung (+200 °C) — Nur erhältlich mit 10. Ziffer N oder D

4 5 | PROZESSANSCHLUSS – NENNWEITE/DRUCKSTUFE (andere Prozessanschlüsse auf Anfrage) Gewindeanschluss

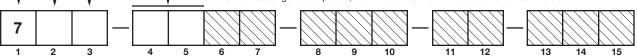
4 1	2" NPT-Gewinde ①	4 2	2" BSP-Gewinde (G 2-Gewinde) ①

ASME-Flansche

4 3	2"	150# ASME RF ①
4 4	2"	300# ASME RF ①
4 5	2"	600# ASME RF ①
4 K	2"	600# ASME RTJ ①
5 3	3"	150# ASME RF
5 4	3"	300# ASME RF
5 5	3"	600# ASME RF
56	3"	900# ASME RF
5 7	3"	1500# ASME RF
5 8	3"	2500# ASME RF
5 K	3"	600# ASME RTJ
5 L	3"	900# ASME RTJ

5 M	3"	1500# ASME RTJ
5 N	3"	2500# ASME RTJ
6 3	4"	150# ASME RF
6 4	4"	300# ASME RF
65	4"	600# ASME RF
66	4"	900# ASME RF
6 7	4"	1500# ASME RF
68	4"	2500# ASME RF
6 K	4"	600# ASME RTJ
6 L	4"	900# ASME RTJ
6 M	4"	1500# ASME RTJ
6 N	4"	2500# ASME RTJ

EN-Flansche


DA	DN 50, PN 16	EN 1092-1 TYP A ①
DΒ	DN 50, PN 25/40	EN 1092-1 TYP A ①
D D	DN 50, PN 63	EN 1092-1 TYP B2 ①
DE	DN 50, PN 100	EN 1092-1 TYP B2 ①
ΕA	DN 80, PN 16	EN 1092-1 TYP A
ЕВ	DN 80, PN 25/40	EN 1092-1 TYP A
ΕD	DN 80, PN 63	EN 1092-1 TYP B2
ΕE	DN 80, PN 100	EN 1092-1 TYP B2
ΕF	DN 80, PN 160	EN 1092-1 TYP B2
E G	DN 80, PN 250	EN 1092-1 TYP B2

ЕН	DN 80, PN 320	EN 1092-1 TYP B2
ΕJ	DN 80, PN 400	EN 1092-1 TYP B2
F A	DN 100, PN 16	EN 1092-1 TYP A
FΒ	DN 100, PN 25/40	EN 1092-1 TYP A
F D	DN 100, PN 63	EN 1092-1 TYP B2
FΕ	DN 100, PN 100	EN 1092-1 TYP B2
FF	DN 100, PN 160	EN 1092-1 TYP B2
F G	DN 100, PN 250	EN 1092-1 TYP B2
FΗ	DN 100, PN 320	EN 1092-1 TYP B2
F J	DN 100, PN 400	EN 1092-1 TYP B2

Torque-Tube-Gegenflansche ②

TT	600# Fisher (249B/259B), Kohlenstoffstahl – Abmessungen siehe Seite 19	
ΤU	600# Fisher (249C), Edelstahl – Abmessungen siehe Seite 19	
UT	600# Masoneilan-Flansch, Kohlenstoffstahl – Abmessungen siehe Seite 19	
UU	600# Masoneilan-Flansch, Edelstahl – Abmessungen siehe Seite 19	

- $\ensuremath{@}$ Abmessungen stets prüfen, wenn keine ASME/EN-Flansche verwendet werden.

VERGRÖSSERTE KOAXIALSONDE

6 | KONSTRUKTIONSCODES

0	Industrieller Einsatz
K	ASME B31.1
L	ASME B31.3
M	ASME B31.3 & NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl
N	NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl

7 | FLANSCHOPTIONEN — Offset-Flansche sind nur für kleine Koaxialsonden erhältlich

0 Keine

8 | WERKSTOFFE - FLANSCH/MUTTER/STAB/ISOLIERUNG

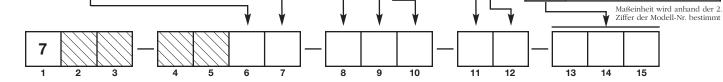
A	316 SS/316L SS (Sonden-Außendurchmesser 45 mm)
В	Hastelloy C (Sonden-Außendurchmesser 49 mm)
С	Monel (Sonden-Außendurchmesser 49 mm)
R	316 SS/316L SS mit Flansch aus Kohlenstoffstahl (Sonden-Außendurchmesser 45 mm)
S	Hastelloy C mit Flansch aus Kohlenstoffstahl (Sonden-Außendurchmesser 49 mm)
Т	Monel mit Flansch aus Kohlenstoffstahl (Sonden-Außendurchmesser 49 mm)

9 | ABSTANDHALTER-WERKSTOFFE

1	TFE (+200 °C) — Nur erhältlich mit 3. Ziffer P oder T — $\varepsilon_{\rm r} \ge 1,4$
2	PEEK HT — Nur erhältlich mit 3. Ziffer D (+345 °C) — $\varepsilon_{\Gamma} \ge 1.4$
3	Keramik (Hochtemp. >+425 °C) — Nur erhältlich mit 3. Ziffer D — $\varepsilon_{\rm r} \ge 2.0$
4	Celazol (+425 °C) — Nur erhältlich mit 3. Ziffer D — $\varepsilon_{\rm r} \ge 1.4$
5	Kein – mit Metall-Kurzschlussbrücke — $\varepsilon_{\rm r} \ge 1,4$ — Einführung in Kürze

10 | O-RING – WERKSTOFFE/DICHTUNGSOPTIONEN

0	Viton® GFLT — Nur erhältlich mit 3. Ziffer T
2	Kalrez® 4079 — Nur erhältlich mit 3. Ziffer T
8	Aegis PF 128 (NACE) — Nur erhältlich mit 3. Ziffer T
A	Kalrez 6375 — Nur erhältlich mit 3. Ziffer T
В	Flusssäure Sonde — Nur erhältlich mit 3. Ziffer T und 8. Ziffer C
D	Kein/Glaskeramik-Legierung (Auslegung mit Doppeldichtung und Melderarmatur)—Nur erhältlich mit 3. Ziffer D oder P
N	Kein/Glaskeramik-Legierung — Nur erhältlich mit 3. Ziffer D, P oder S


11 | SONDENGRÖSSE/ELEMENTTYP/SPÜLANSCHLUSS

0	Vergrößerte Standard-Koaxialsonde
1	Vergrößerte Standard-Koaxialsonde mit Spülanschluss

12 | SONDEROPTIONEN —Siehe Seite 36

X X X | cm (030 - 999) Zoll (012 - 396)

KLEINE KOAXIALSONDE

ECI	IPSE GWR-Sonden – Modell 706			
2 MES	SSYSTEM			
A	Englisch (Inch)			
С	Metrisch (Zentimeter)			
3	KONFIGURATION/STIL (STARR)			
	D Kleine Koaxialsonde, Hochtemp./Hochdruck: Überf	üllschutz mit Gla	asdichtung (+450°C) — 1	Nur erhältlich mit 10. Ziffer N oder
	P Kleine Koaxialsonde, Hochdruck: Überfüllschu	z mit Glasdich	tung (+200 °C) — Nur	erhältlich mit 10. Ziffer N oder D
	S Koaxialsonde, Sattdampf (bis zu +425 °C) — Nur			
	T Kleine Koaxialsonde, Überfüllsicherung, standa			
	4 5 PROZESSANSCHLUSS – NENNWEITE/DR	JCKSTUFE (a	ındere Prozessansch	lüsse auf Anfrage)
	Gewindeanschluss			
	1 1 3/4" NPT-Gewinde – Nicht erhältlich mit 3. Ziffer D	2 2		Gewinde) – Nicht erhältlich mit 3. Ziff
	4 1 2" NPT-Gewinde – Nicht erhältlich mit 3. Ziffer S	4 2	2" BSP-Gewinde (G 2-Ge	ewinde) – Nicht erhältlich mit 3. Ziffer
	ASME-Flansche			
	2 3 1" 150# ASME RF ① ③ 3 8 1 1/2" 2500# ASME	RF 3 5 3 3	3" 150# ASME RF	6 3 4" 150# ASME RF
	2 4 1" 300# ASME RF ① ③ 3 N 1 1/2" 2500# ASME			6 4 4" 300# ASME RF
	2 5 1" 600# ASME RF ① ③ 4 3 2" 150# ASME RI	5 5 3	3" 600# ASME RF	6 5 4" 600# ASME RF
	2 K 1" 600# ASME RTJ ① ③ 4 4 2" 300# ASME RI	563	3" 900# ASME RF	6 6 4" 900# ASME RF
	3 3 1 1/2" 150# ASME RF ③ 4 5 2" 600# ASME RF	573	3" 1500# ASME RF	6 7 4" 1500# ASME RF
	3 4 1 1/2" 300# ASME RF ③ 4 7 2" 900/1500# AS	ME RF 5 8 3	3" 2500# ASME RF	6 8 4" 2500# ASME RF
	3 5 1 1/2" 600# ASME RF ③ 4 8 2" 2500# ASME F			6 K 4" 600# ASME RTJ
	3 K 1 1/2" 600# ASME RTJ ③ 4 K 2" 600# ASME RT		3" 900# ASME RTJ	6 L 4" 900# ASME RTJ
	3 7 1 1/2" 900/1500# ASME RF ③ 4 M 2" 900/1500# AS		•	6 M 4" 1500# ASME RT
	3 M 1 1/2" 900/1500# ASME RTJ③ 4 N 2" 2500# ASME F	TJ 5 N 3	3" 2500# ASME RTJ	6 N 4" 2500# ASME RT
	EN-Flansche			
	B B DN 25, PN 16/25/40 EN 1092-1 TYP A ① ③	ΕA	DN 80, PN 16	EN 1092-1 TYP A
	B C DN 25, PN 63/100 EN 1092-1 TYP B2 ① ③		DN 80, PN 25/40	EN 1092-1 TYP A
	C B DN 40, PN 16/25/40 EN 1092-1 TYP A 3	E D	DN 80, PN 63	EN 1092-1 TYP B2
	C C DN 40, PN 63/100 EN 1092-1 TYP B2 ③	E E	DN 80, PN 100	EN 1092-1 TYP B2
	C F DN 40, PN 160 EN 1092-1 TYP B2 ③ C G DN 40, PN 250 EN 1092-1 TYP B2 ③	E F E G	DN 80, PN 160 DN 80, PN 250	EN 1092-1 TYP B2 EN 1092-1 TYP B2
	C H DN 40, PN 320 EN 1092-1 TYP B2 ③	E H	DN 80, PN 320	EN 1092-1 TYP B2
	C J DN 40, PN 400 EN 1092-1 TYP B2 ③	EJ	DN 80, PN 400	EN 1092-1 TYP B2
	D A DN 50, PN 16 EN 1092-1 TYP A	F A	DN 100, PN 16	EN 1092-1 TYP A
	D B DN 50, PN 25/40 EN 1092-1 TYP A	F B	DN 100, PN 25/40	EN 1092-1 TYP A
	D D DN 50, PN 63 EN 1092-1 TYP B2	F D	DN 100, PN 63	EN 1092-1 TYP B2
	D E DN 50, PN 100 EN 1092-1 TYP B2	FE	DN 100, PN 100	EN 1092-1 TYP B2
	D F DN 50, PN 160 EN 1092-1 TYP B2	FF	DN 100, PN 160	EN 1092-1 TYP B2
	D G DN 50, PN 250 EN 1092-1 TYP B2	F G	DN 100, PN 250	EN 1092-1 TYP B2
	D H DN 50, PN 320 EN 1092-1 TYP B2	F H	DN 100, PN 320	EN 1092-1 TYP B2
	D J DN 50, PN 400 EN 1092-1 TYP B2	FJ	DN 100, PN 400	EN 1092-1 TYP B2
	Torque-Tube-Gegenflansche ②			
	T T 600# Fisher (249B/259B), Kohlenstoffstahl			
	T U 600# Fisher (249C), Edelstahl – Abmessun	_		
	U T 600# Masoneilan-Flansch, Kohlenstoffstah			
	U U 600# Masoneilan-Flansch, Edelstahl – Abn			augraichand Erairaum varhau-l-
	1		ASME/EN-Flansche verwer	ausreichend Freiraum vorhande ndet werden.
٦	3 Nicht erhältlich mit 3.			

KLEINE KOAXIALSONDE

6 | KONSTRUKTIONSCODES

0	Industrieller Einsatz
K	ASME B31.1 — Nicht erhältlich mit 4. Ziffer T oder U
L	ASME B31.3
M	ASME B31.3 & NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl
N	NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl

7 | FLANSCHOPTIONEN — Offset-Flansche sind nur für kleine Koaxialsonden erhältlich

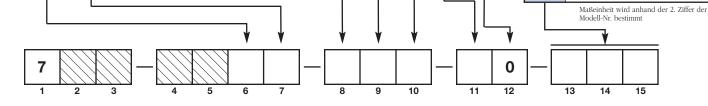
	0	Keine
	1	Offset (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer P, S oder T und J und 4. Ziffer 6
2 Offset mit 1/2" NPT-Entlüftung (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer P.		Offset mit 1/2" NPT-Entlüftung (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer P, S oder T und 4. Ziffer 6
	3	Offset mit 3/4" NPT-Entlüftung (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer P, S oder T und 4. Ziffer 6

8 | WERKSTOFFE - FLANSCH/MUTTER/STAB/ISOLIERUNG

A	316 SS/316L SS
В	Hastelloy C
С	Monel — Nicht erhältlich mit 3. Ziffer S
R	316 SS/316L SS mit Flansch aus Kohlenstoffstahl
S	Hastelloy C mit Flansch aus Kohlenstoffstahl
Т	Monel mit Flansch aus Kohlenstoffstahl — Nicht erhältlich mit 3. Ziffer S

9 | ABSTANDHALTER-WERKSTOFFE

	1	TFE (+200 °C) — Nur erhältlich mit 3. Ziffer P oder T — $\varepsilon_{\rm r} \ge 1.4$
	2	PEEK HT — Nur erhältlich mit 3. Ziffer D — $\varepsilon_{\Gamma} \ge 1.4 \ (+345 \ ^{\circ}\text{C}) \ \text{oder S} \ (+300 \ ^{\circ}\text{C})$
Γ	3	Keramik (+345 °C) — Nur erhältlich mit 3. Ziffer D — $\varepsilon_{\Gamma} \ge 2,0$ oder 3. Ziffer S ①
Γ	5	Kein — Ein metallischer Abstandhalter am Ende der Sonde — Nur erhältlich mit 3. Ziffer S und 11. Ziffer A oder B ①


① Nicht erhältlich mit 5. Ziffer 1 oder 2

10 | O-RING – WERKSTOFFE/DICHTUNGSOPTIONEN

0	Viton® GFLT — Nur erhältlich mit 3. Ziffer T
2	Kalrez® 4079 — Nur erhältlich mit 3. Ziffer T
8	Aegis PF 128 (NACE) — Nur erhältlich mit 3. Ziffer T
A	Kalrez 6375 — Nur erhältlich mit 3. Ziffer T
В	Flusssäure Sonde — Nur erhältlich mit 3. Ziffer T und 8. Ziffer C
D	Kein/Glaskeramik-Legierung (Auslegung mit Doppeldichtung und Melderarmatur) — Nur erhältlich mit 3. Ziffer D oder P
N	Kein/Glaskeramik-Legierung — Nur erhältlich mit 3. Ziffer D oder P

11 | PROBE SIZE/ELEMENT TYPE/FLUSHING CONNECTION

_				
2	Kleine Koaxialsonde (22 mm)			
A	Mittlere Koaxialsonde (1,25 inches/ 32mm) — Nur erhältlich mit 3. Ziffer S ②			
В	Große Koaxialsonde (1,62 inches/ 42mm) — Nur erhältlich mit 3. Ziffer \$ ③			
	② maximale Länge: 244cm③ maximale Länge: 305cm12 SONDEROPTIONEN			
	0 Sonde mit einer Länge (nicht segmentiert)			
	13 14 15 EINBAULÄNGE			
	X X X			

BEZUGSGEFÄSSSONDE

1 | FUNKTIONSPRINZIP

7 ECLIPSE GWR-Sonden – Modell 706

2 | MESSSYSTEM

A	Englisch (Inch)
С	Metrisch (Zentimeter)

3 | KONFIGURATION/STIL (STARR)

G	Bezugsgefäß-Stabsonde mit Überfüllsicherung für den Einsatz in Bezugsgefäßen +200 °C		
J	Bezugsgefäß-Stabsonde mit Überfüllsicherung für Hochtemp./Hochdruck mit Glasdichtung für den Einsatz in Bezugsgefäßen +450 °C		
L	Bezugsgefäß-Stabsonde mit Überfüllsicherung für Hochdruck mit Glasdichtung für den Einsatz in Bezugsgefäßen +200°C		

4 5 | PROZESSANSCHLUSS – NENNWEITE/DRUCKSTUFE (andere Prozessanschlüsse auf Anfrage) ① ASME-Flansche

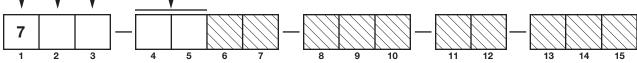
4 3	2"	150# ASME RF
4 4	2"	300# ASME RF
4 5	2"	600# ASME RF
4 7	2"	900/1500# ASME RF
48	2"	2500# ASME RF
4 K	2"	600# ASME RTJ
4 M	2"	900/1500# ASME RTJ
4 N	2"	2500# ASME RTJ
5 3	3"	150# ASME RF

5 4	3"	300# ASME RF
5 5	3"	600# ASME RF
56	3"	900# ASME RF
5 7	3"	1500# ASME RF
58	3"	2500# ASME RF
5 K	3"	600# ASME RTJ
5 L	3"	900# ASME RTJ
5 M	3"	1500# ASME RTJ
5 N	3"	2500# ASME RTJ

63	4"	150# ASME RF
6 4	4"	300# ASME RF
65	4"	600# ASME RF
66	4"	900# ASME RF
67	4"	1500# ASME RF
68	4"	2500# ASME RF
6 K	4"	600# ASME RTJ
6 L	4"	900# ASME RTJ
6 M	4"	1500# ASME RTJ
6 N	4"	2500# ASME RTJ

EN-Flansche

DΑ	DN 50, PN 16	EN 1092-1 TYP A
DΒ	DN 50, PN 25/40	EN 1092-1 TYP A
D D	DN 50, PN 63	EN 1092-1 TYP B2
DE	DN 50, PN 100	EN 1092-1 TYP B2
D F	DN 50, PN 160	EN 1092-1 TYP B2
D G	DN 50, PN 250	EN 1092-1 TYP B2
DΗ	DN 50, PN 320	EN 1092-1 TYP B2
DЈ	DN 50, PN 400	EN 1092-1 TYP B2
ЕА	DN 80, PN 16	EN 1092-1 TYP A
ЕВ	DN 80, PN 25/40	EN 1092-1 TYP A
ΕD	DN 80, PN 63	EN 1092-1 TYP B2
ЕЕ	DN 80, PN 100	EN 1092-1 TYP B2


ΕF	DN 80, PN 160	EN 1092-1 TYP B2
E G	DN 80, PN 250	EN 1092-1 TYP B2
ЕН	DN 80, PN 320	EN 1092-1 TYP B2
ЕЈ	DN 80, PN 400	EN 1092-1 TYP B2
F A	DN 100, PN 16	EN 1092-1 TYP A
FΒ	DN 100, PN 25/40	EN 1092-1 TYP A
F D	DN 100, PN 63	EN 1092-1 TYP B2
FΕ	DN 100, PN 100	EN 1092-1 TYP B2
FF	DN 100, PN 160	EN 1092-1 TYP B2
F G	DN 100, PN 250	EN 1092-1 TYP B2
FΗ	DN 100, PN 320	EN 1092-1 TYP B2
F J	DN 100, PN 400	EN 1092-1 TYP B2

Torque-Tube-Gegenflansche 2

ТТ	600# Fisher (249B/259B), Kohlenstoffstahl – Abmessungen siehe Seite 19	
ΤU	600# Fisher (249C), Edelstahl – Abmessungen siehe Seite 19	
UΤ	600# Masoneilan-Flansch, Kohlenstoffstahl – Abmessungen siehe Seite 19	
UU	600# Masoneilan-Flansch, Edelstahl – Abmessungen siehe Seite 19	

① Montagebedingungen und Stutzendurchmesser überprüfen, damit ausreichend Freiraum vorhanden ist.

 $\ensuremath{@}$ Abmessungen stets prüfen, wenn keine ASME/EN-Flansche verwendet werden.

BEZUGSGEFÄSSSONDE

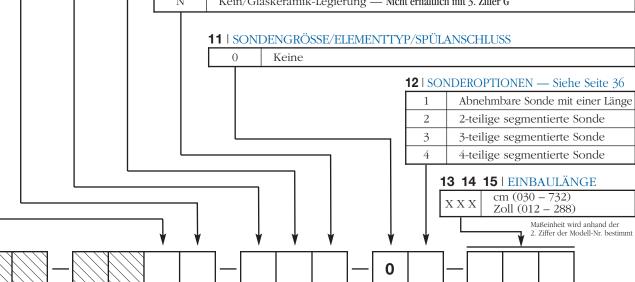
| KONSTRUKTIONSCODES

0	Industrieller Einsatz
K	ASME B31.1
L	ASME B31.3
M	ASME B31.3 & NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl
N	NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl

| FLANSCHOPTIONEN

0	Keine
1	Offset (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer G und J und 4. Ziffer 6
2	Offset mit 1/2" NPT-Entlüftung (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer G und J und 4. Ziffer 6
3	Offset mit 3/4" NPT-Entlüftung (Zur Verwendung mit AURORA) — Nur erhältlich mit 3. Ziffer G und J und 4. Ziffer 6

| WERKSTOFFE – FLANSCH/MUTTER/STAB/ISOLIERUNG


A	316 SS/316L SS
В	Hastelloy C
С	Monel
R	316 SS/316L SS mit Flansch aus Kohlenstoffstahl
S	Hastelloy C mit Flansch aus Kohlenstoffstahl
Т	Monel mit Flansch aus Kohlenstoffstahl

| ABSTANDHALTER-WERKSTOFFE

2	PEEK HT (+345 °C)
3	Keramik (Hochtemp.> +425 °C) — Nur erhältlich mit 3. Ziffer J
4	Celazol® (+425 °C) — Nur erhältlich mit 3. Ziffer J

| O-RING – WERKSTOFFE/DICHTUNGSOPTIONEN

0	Viton® GFLT — Nicht erhältlich mit 3. Ziffer J oder L
2	Kalrez 4079 — Nicht erhältlich mit 3. Ziffer J oder L
8	Aegis PF 128 (NACE) — Nicht erhältlich mit 3. Ziffer J oder L
A	Kalrez 6375 — Nicht erhältlich mit 3. Ziffer J oder L
В	Flusssäure Sonde — Nur erhältlich mit 3. Ziffer G und 8. Ziffer C
D	Kein/Glaskeramik-Legierung (Auslegung mit Doppeldichtung und Melderarmatur) — Nicht erhältlich mit 3. Ziffer G
N	Kein/Glaskeramik-Legierung — Nicht erhältlich mit 3. Ziffer G

STABSONDE

1 | FUNKTIONSPRINZIP

7 ECLIPSE GWR-Sonden – Modell 706

2 | MESSSYSTEM

A	Englisch (Inch)
С	Metrisch (Zentimeter)

3 | KONFIGURATION/STIL (STARR)

F	Standard-Stabsonde (+200 °C) für Anwendungen im Tankinneren — Nicht erhältlich mit 10. Ziffer N oder D
M	Stabsonde für Hochdruck mit Glasdichtung (+200 °C), für Anwendungen im Tankinneren — Nur erhältlich mit 10. Ziffer N oder D
N	Stabsonde für Hochtemp./Hochdruck mit Glasdichtung (+450 °C), für Anwendungen im Tankinneren — Nur erhältlich mit 10. Ziffer N oder D

4 5 | PROZESSANSCHLUSS – NENNWEITE/DRUCKSTUFE (andere Prozessanschlüsse auf Anfrage) ①

Gewindeanschluss

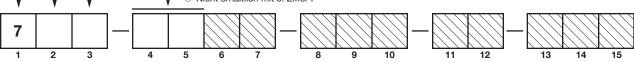
1 1	3/4" NPT-Gewinde ②
2 1	1" NPT-Gewinde ②
4 1	2" NPT-Gewinde

2 2		1" BSP-Gewinde (G 1-Gewinde) ②
	4 2	2" BSP-Gewinde (G 2-Gewinde)

ASME-Flansche

3 3	1 1/2" 150# ASME RF ①③
3 4	1 1/2" 300# ASME RF ①③
3 5	1 1/2" 600# ASME RF ①③
3 7	1 1/2" 900/1500# ASME RF 4
3 K	1 1/2" 600# ASME RTJ ④
3 M	1 1/2" 900/1500# ASME RTJ ④
4 3	2" 150# ASME RF ①
4 4	2" 300# ASME RF ①
4 5	2" 600# ASME RF ①
4 7	2" 900/1500# ASME RF 4
4 8	2" 2500# ASME RF @
4 K	2" 600# ASME RTJ ④
4 M	2" 900/1500# ASME RTJ @

4 N	2"	2500# ASME RTJ ④
5 3	3"	150# ASME RF
5 4	3"	300# ASME RF
5 5	3"	600# ASME RF
5 6	3"	900# ASME RF ④
5 7	3"	1500# ASME RF 4
5 8	3"	2500# ASME RF 4
5 K	3"	600# ASME RTJ ④
5 L	3"	900# ASME RTJ ④
5 M	3"	1500# ASME RTJ ④


5 N	3" 2500# ASME RTJ ④
63	4" 150# ASME RF
6 4	4" 300# ASME RF
6.5	4" 600# ASME RF
66	4" 900# ASME RF ④
67	4" 1500# ASME RF ④
68	4" 2500# ASME RF @
6 K	4" 600# ASME RTJ 4
6 L	4" 900# ASME RTJ ④
6 M	4" 1500# ASME RTJ ④
6 N	4" 2500# ASME RTJ @

EN-Flansche

СВ	DN 40, PN 16/25/40	EN 1092-1 TYP A ①③
СС	DN 40, PN 63/100	EN 1092-1 TYP B2 ①③
C F	DN 40, PN 160	EN 1092-1 TYP B2 ①3④
C G	DN 40, PN 250	EN 1092-1 TYP B2 ①3④
D A	DN 50, PN 16	EN 1092-1 TYP A ①
DΒ	DN 50, PN 25/40	EN 1092-1 TYP A ①
D D	DN 50, PN 63	EN 1092-1 TYP B2 ①
DE	DN 50, PN 100	EN 1092-1 TYP B2 ①
DF	DN 50, PN 160	EN 1092-1 TYP B2 ④
DG	DN 50, PN 250	EN 1092-1 TYP B2 ④
DΗ	DN 50, PN 320	EN 1092-1 TYP B2 ④
DЈ	DN 50, PN 400	EN 1092-1 TYP B2 ④
ΕA	DN 80, PN 16	EN 1092-1 TYP A ①
ЕВ	DN 80, PN 25/40	EN 1092-1 TYP A

E D DN 80, PN 63 EN 1092-1 TYP B2 E E DN 80, PN 100 EN 1092-1 TYP B2 E F DN 80, PN 160 EN 1092-1 TYP B2	4
E F DN 80, PN 160 EN 1092-1 TYP B2	4)
, , ,	4
D. C. DALOO DALOGO EN 1000 1 TVD DO	
E G DN 80, PN 250 EN 1092-1 TYP B2	4
E H DN 80, PN 320 EN 1092-1 TYP B2	4
E J DN 80, PN 400 EN 1092-1 TYP B2	4
F A DN 100, PN 16 EN 1092-1 TYP A	
F B DN 100, PN 25/40 EN 1092-1 TYP A	
F D DN 100, PN 63 EN 1092-1 TYP B2	
F E DN 100, PN 100 EN 1092-1 TYP B2	
F F DN 100, PN 160 EN 1092-1 TYP B2	4
F G DN 100, PN 250 EN 1092-1 TYP B2	4
F H DN 100, PN 320 EN 1092-1 TYP B2	4
F J DN 100, PN 400 EN 1092-1 TYP B2	4

- $\textcircled{1} \ \, \textbf{Montagebedingungen und Stutzendurchmesser \"{u}berpr\"{u}fen, damit ausreichend Freiraum vorhanden ist.}$
- ② Nicht erhältlich mit 3. Ziffer N oder 8. Ziffer P
- 3 Nicht erhältlich mit 3. Ziffer M oder N
- ④ Nicht erhältlich mit 3. Ziffer F

STABSONDE

| KONSTRUKTIONSCODES

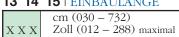
0	Industrieller Einsatz
K	ASME B31.1
L	ASME B31.3
M	ASME B31.3 & NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl
N	NACE MR0175/MR0103 — Nicht erhältlich mit Flansch aus Kohlenstoffstahl

| FLANSCHOPTIONEN

Keine	
Q W/EDKSTOFFE	ELANGCH/MITTED/STAR/ISOLIEDING

A	316 SS/316L SS
В	Hastelloy C
С	Monel
F	Beschichteter Flansch, PFA-beschichtete mediumberührende Oberflächen — Nur erhältlich mit 3. Ziffer F
Р	PFA-beschichteter Stab — Nur erhältlich mit 3. Ziffer F
R	316 SS/316L SS mit Flansch aus Kohlenstoffstahl
S	Hastelloy C mit Flansch aus Kohlenstoffstahl
Т	Monel mit Flansch aus Kohlenstoffstahl

| ABSTANDHALTER-WERKSTOFFE


0	Keine – Nicht erhältlich mit 3. Ziffer N
2	PEEK HT (+345 °C) — Nur erhältlich mit 3. Ziffer N
3	Keramik (Hochtemp. >+425 °C) — Nur erhältlich mit 3. Ziffer N
4	Celazol® (+425 °C) — Nur erhältlich mit 3. Ziffer N

| O-RING – WERKSTOFFE/DICHTUNGSOPTIONEN

ı	0	Viton® GFLT — Nicht erhältlich mit 3. Ziffer M oder N
	2	Kalrez 4079 — Nicht erhältlich mit 3. Ziffer M oder N
I	8	Aegis PF 128 (NACE) — Nicht erhältlich mit 3. Ziffer M oder N
I	A	Kalrez 6375 — Nicht erhältlich mit 3. Ziffer M oder N
	D	Kein/Glaskeramik-Legierung, Doppeldichtung und Melderarmatur — Nicht erhältlich mit 3. Ziffer F
I	N	Kein/Glaskeramik-Legierung, Doppeldichtung — Nicht erhältlich mit 3. Ziffer F

| SONDENGRÖSSE/ELEMENTTYP/SPÜLANSCHLUSS

0	Standard-Sta	bsonde
	12 SO	NDEROPTIONEN
	0	Nicht entnehmbarer Stab — Nur erhältlich mit PFA- beschichteten Sonden (8. Ziffer F oder P)
	1	Entnehmbarer Stab — Nicht erhältlich mit PFA-be- schichteten Sonden (8. Ziffer F oder P)
	2	2-teilige segmentierte Sonde
	3	3-teilige segmentierte Sonde
	4	4-teilige segmentierte Sonde
	5	5-teilige segmentierte Sonde
	6	6-teilige segmentierte Sonde
		13 14 15 EINBAULÄNGE
		(020 722)

Maßeinheit wird anhand der 2. Ziffer der Modell-Nr. bestimmt

610cm wenn 8. Ziffer = F oder P

SEILSONDE

1 | FUNKTIONSPRINZIP

ECLIPSE GWR-Sonden – Modell 706

2 | MESSSYSTEM

A	Englisch
С	Metrisch

3 | SPEZIAL-SEILSONDEN

1	Standard-Seilsonde für den Einsatz im Tankinneren (+200 °C)
2	Schüttgüter-Seilsonde für leichte Beanspruchung
3	Hochdruck-Seilsonde für den Einsatz im Tankinneren (+200 °C)
6	Hochtemp./Hochdruck-Seilsonde für den Einsatz im Bezugsgefäß (+450 °C)

4 5 | PROZESSANSCHLUSS – NENNWEITE/DRUCKSTUFE (andere Prozessanschlüsse auf Anfrage)

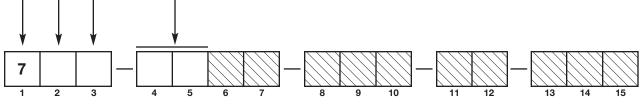
Gewindeanschluss

	4 1	2" NPT-Gewinde (nicht erhältlich mit 7y6)	4 2	2" BSP-Gewinde (G 2-Gewinde)(nicht erhältlich mit 7y6)
--	-----	---	-----	--

ASME-Flansche

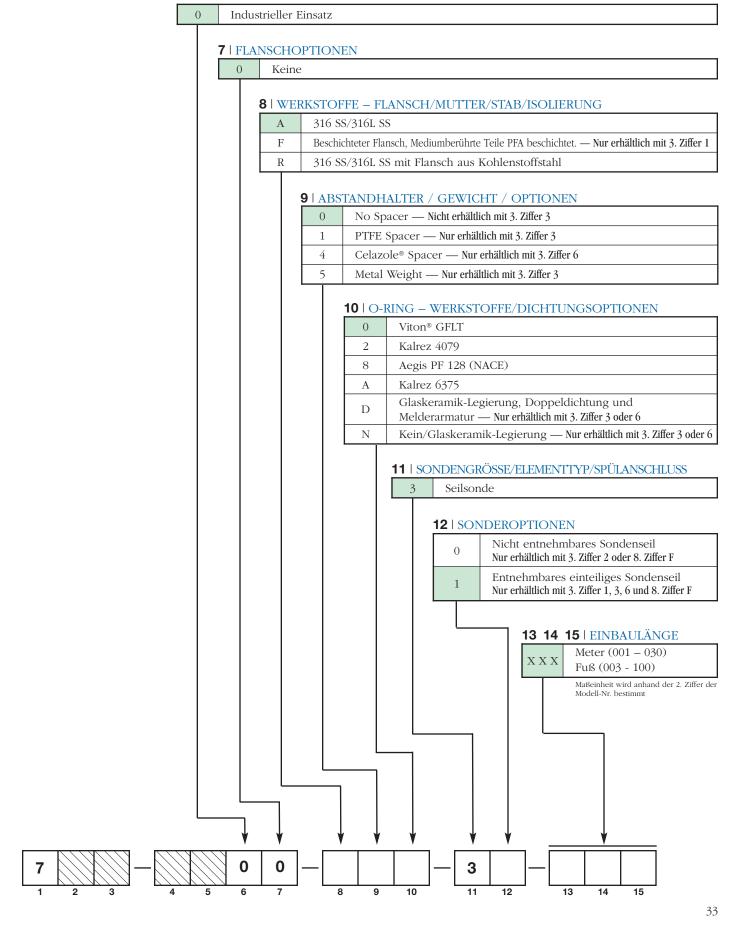
4 3	2"	150# ASME RF ①
4 4	2"	300# ASME RF ①
4 5	2"	600# ASME RF ①
4 7	2"	900/1500# ASME RF
4 8	2"	2500# ASME RF
4 K	2"	600# ASME RTJ
4 M	2"	900/1500# ASME RTJ
4 N	2"	2500# ASME RTJ
		·

5 3	3"	150# ASME RF
5 4	3"	300# ASME RF
5 5	3"	600# ASME RF
5 6	3"	900# ASME RF
5 7	3"	1500# ASME RF
5 8	3"	2500# ASME RF
5 K	3"	600# ASME RTJ
5 L	3"	900# ASME RTJ
5 M	3"	1500# ASME RTJ
5 N	3"	2500# ASME RTJ


63	4" 150# ASME RF
6 4	4" 300# ASME RF
6.5	4" 600# ASME RF
6.6	4" 900# ASME RF @
6 7	4" 1500# ASME RF @
68	4" 2500# ASME RF @
6 K	4" 600# ASME RTJ @
6 L	4" 900# ASME RTJ @
6 M	4" 1500# ASME RTJ ②
6 N	4" 2500# ASME RTJ ②

EN-Flansche

D A	DN 50, PN 16	EN 1092-1 TYP A ①
DΒ	DN 50, PN 25/40	EN 1092-1 TYP A ①
D D	DN 50, PN 63	EN 1092-1 TYP B2 ①
DE	DN 50, PN 100	EN 1092-1 TYP B2 ①
DF	DN 50, PN 160	EN 1092-1 TYP B2 ②
DG	DN 50, PN 250	EN 1092-1 TYP B2 ②
DΗ	DN 50, PN 320	EN 1092-1 TYP B2 ②
DЈ	DN 50, PN 400	EN 1092-1 TYP B2 ②
ΕA	DN 80, PN 16	EN 1092-1 TYP A ①
ЕВ	DN 80, PN 25/40	EN 1092-1 TYP A
ΕD	DN 80, PN 63	EN 1092-1 TYP B2
ΕЕ	DN 80, PN 100	EN 1092-1 TYP B2


ΕF	DN 80, PN 160	EN 1092-1 TYP B2 ②
E G	DN 80, PN 250	EN 1092-1 TYP B2 ②
ЕН	DN 80, PN 320	EN 1092-1 TYP B2 ②
ЕЈ	DN 80, PN 400	EN 1092-1 TYP B2 ②
F A	DN 100, PN 16	EN 1092-1 TYP A
FΒ	DN 100, PN 25/40	EN 1092-1 TYP A
F D	DN 100, PN 63	EN 1092-1 TYP B2
FΕ	DN 100, PN 100	EN 1092-1 TYP B2
FF	DN 100, PN 160	EN 1092-1 TYP B2 ②
F G	DN 100, PN 250	EN 1092-1 TYP B2 ②
FΗ	DN 100, PN 320	EN 1092-1 TYP B2 ②
FJ	DN 100, PN 400	EN 1092-1 TYP B2 ②
	· · · · · · · · · · · · · · · · · · ·	·

Montagebedingungen und Stutzendurchmesser überprüfen, damit ausreichend Freiraum vorhanden ist.
 Nur erhältlich mit 3. Ziffer 3 oder 6

SEILSONDE

DOPPELSEILSONDE

1 | FUNKTIONSPRINZIP

7 ECLIPSE GWR-Sonden – Modell 706

2 | MESSSYSTEM

A	Englisch
С	Metrisch

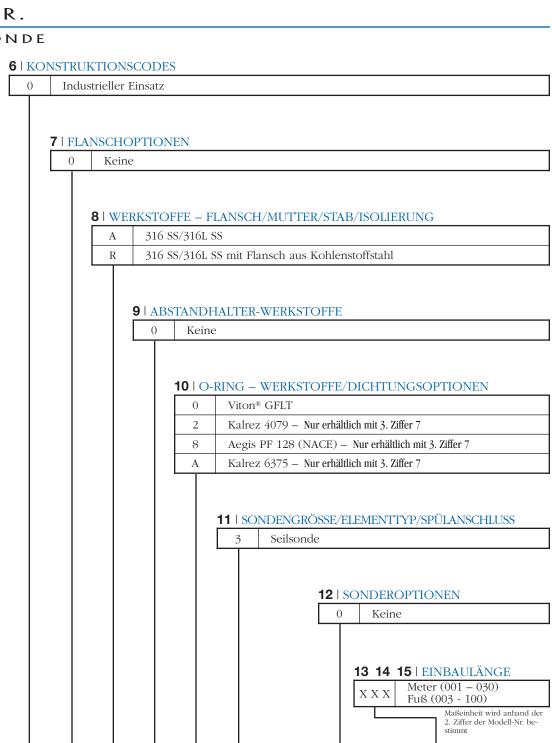
3 | SPEZIAL-SEILSONDEN

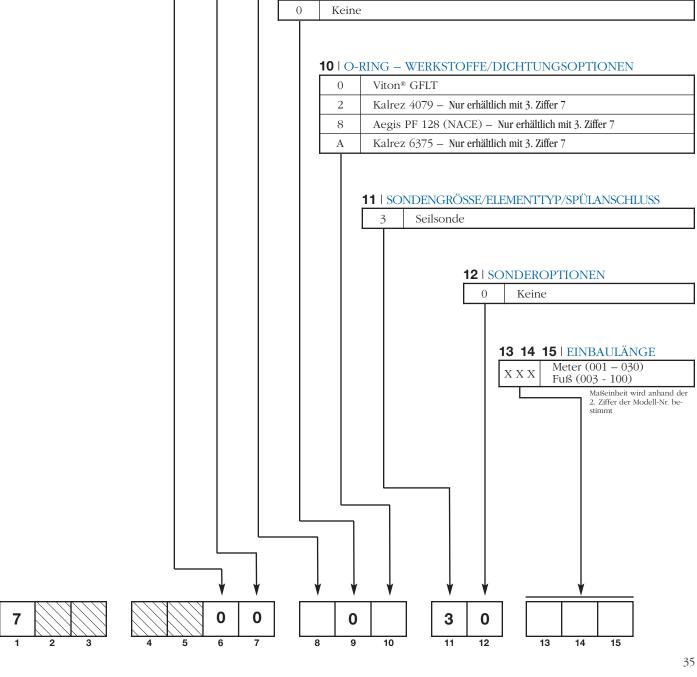
5	Schüttgüter-Doppelseilsonde für leichte Beanspruchung mit FEP-Beschichtung
7 Doppelseilsonde – 316 SS mit FEP-Beschichtung	

4 5 | PROZESSANSCHLUSS – NENNWEITE/DRUCKSTUFE (andere Prozessanschlüsse auf Anfrage)

Gewindeanschluss ①

4 1	2" NPT-Gewinde		4 2	2" BSP-Gewinde (G 2-Gewinde)
-----	----------------	--	-----	------------------------------

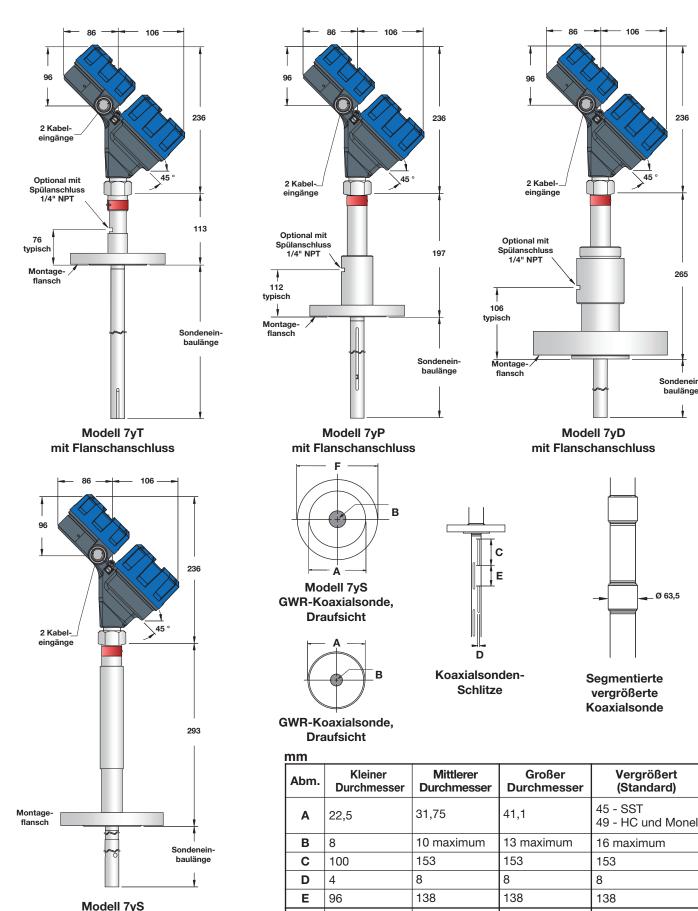

ASME-Flansche


5 3	3"	150 lb. ASME RF
5 4	3"	300 lb. ASME RF
5 5	3"	600 lb. ASME RF
6 3	4"	150 lb. ASME RF
6 4	4"	300 lb. ASME RF
6.5	4"	600 lb. ASME RF

EN-Flansche

ΕA	DN 80, PN 16	EN 1092-1 TYP A
ЕВ	DN 80, PN 25/40	EN 1092-1 TYP A
ΕD	DN 80, PN 63	EN 1092-1 TYP B2
ΕE	DN 80, PN 100	EN 1092-1 TYP B2
F A	DN 100, PN 16	EN 1092-1 TYP A
FΒ	DN 100, PN 25/40	EN 1092-1 TYP A
F D	DN 100, PN 63	EN 1092-1 TYP B2
FΕ	DN 100, PN 100	EN 1092-1 TYP B2

DOPPELSEILSONDE



OPTIONEN FÜR SEGMENTIERTE SONDEN

12. ZIFFER DER MODELL-NR.

Sondenmodell	Ein Segment	Zwei Segmente	Drei Segmente	Vier Segmente	Fünf Segmente	Sechs Segmente
Koaxialsonden-Modelle 7yD, 7yP und 7yT (nur vergrößerte Ausführungen) (3", DN 80 Prozess- anschlüsse und größer)	60 – 182 cm	120 – 365 cm	180 – 548 cm	240 – 731 cm	305 – 914 cm	365 – 999 cm
Modelle mit Bezugsgefäß 7yG, 7yL und 7yJ	30 – 305 cm	60 – 610 cm	90 – 732 cm	120 – 732 cm	Nicht vorhanden	Nicht vorhanden

HINWEIS: Die Segmente sind gleichmäßig über die Sondenlänge verteilt.

F

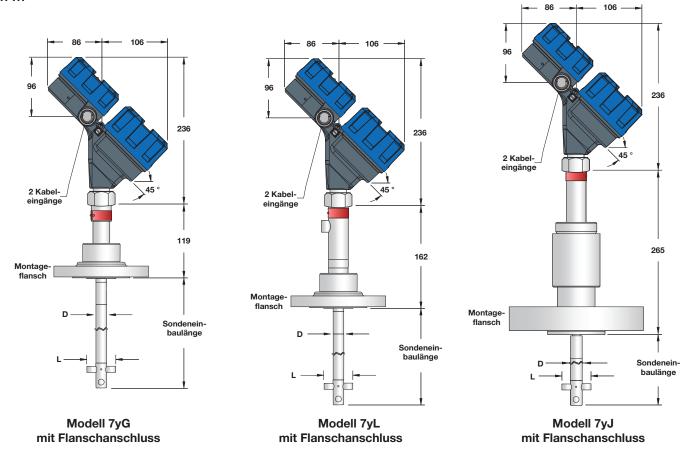
mit Flanschanschluss

31,75

106

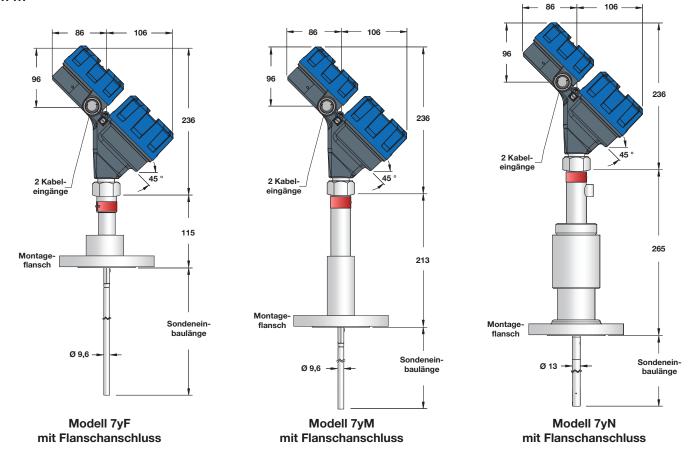
236

265

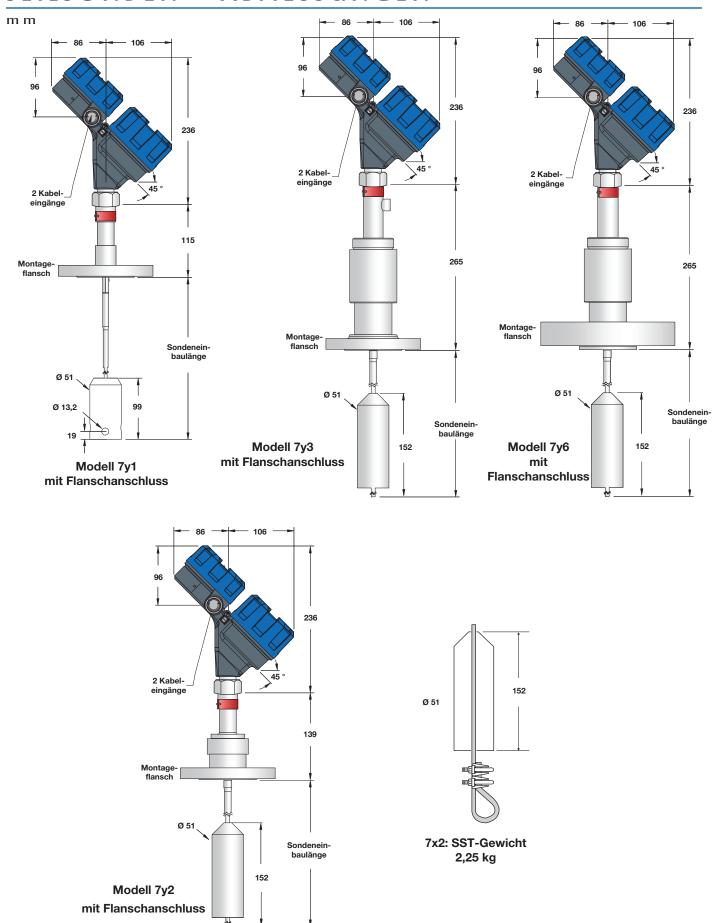

Sondeneinbaulänge

Ø 63,5

Vergrößert


(Standard)

m m



Bezugsgefäßgröße	Sondenstab-Durchmesser (D)	Abstandhalter-Länge (L)
2"	13 bis 19 mm	46 mm
3"	19 bis 29 mm	67 mm
4"	27 bis 38 mm	91 mm

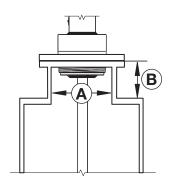
m m

SEILSONDEN - ABMESSUNGEN

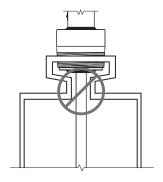
STANDARD-STABSONDE FÜR EINSATZ IM TANKINNEREN

MONTAGEHINWEISE

Für Stabsondenmodelle 7yF, M, N und Seilsondenmodelle 7y1, 2 und 6


1. Turbulenzen

In turbulenten Medien sollte das untere Sondenende fixiert werden, wenn der Versatz mehr als 75 mm am Ende einer 3 m langen Sonde beträgt. Ein Kontakt der Sonde mit Metall sollte ebenfalls vermieden werden.


2. Stutzen

Die Leistung eines Stabs im Stutzen kann verbessert werden, wenn Folgendes gewährleistet ist:

- Stutzen muss mindestens 50 mm lichte Weite haben.
- Stutzen sollte so kurz wie möglich sein.
- Stutzenweite (A) sollte immer ≥ Stutzenlänge (B) sein.
 - Ist dies nicht der Fall, kann eine Anpassung der Parameter BLOCKIERDISTANZ und/oder EMPFINDLICH-KEIT erforderlich sein.

Korrekte Montage

Stutzen mit Einzug dürfen nicht verwendet werden

3. Metallische (leitende) Einbauten in Behältern

Obwohl es von der Konfiguration des Messumformers abhängt, können in der Nähe befindliche Objekte Fehlmessungen verursachen. In der Folgenden Tabelle sind Anweisungen aufgeführt. Wenden Sie sich jedoch an den Hersteller, wenn Sie Fragen dazu haben, wie die genannten Abstände mit Hilfe von PACT*ware*™ verringert werden können.

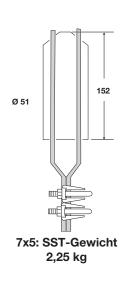
Distanz zur Sonde	Zulässige Störobjekte
< 150 mm	Gleichmäßige, glatte, parallele, leitfähige Oberflächen (z.B. Behälterwand aus Metall); Sonde darf Behälterwand nicht berühren
> 150 mm	< 1"/DN 25 Rohre, Balken oder Leitern/Leitersprossen
> 300 mm	< 3"/DN 80 Rohre, Balken oder Betonwände
> 450 mm	Alle übrigen Störobjekte

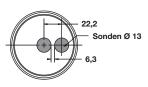
Hinweis: Durch ein Schwallrohr bzw. Bezugsgefäß aus Metall von max. 6"/DN150 oder einer Metallbehälterwand im Abstand von 150 mm zur Sonde kann das Gerät präzise in Medien mit einem Epsilonwert ab $\epsilon_{\rm r}$ 1,4 arbeiten.

4. Nicht-metallische Behälter

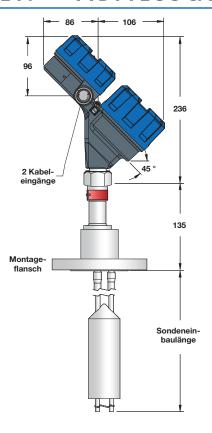
Um auch in Behältern aus Kunststoff eine optimale Leistung zu erzielen, wird dringend empfohlen, einen Metallflansch zu verwenden.

HINWEIS: In Metallbehältern oder -tauchrohren müssen Stabsonden eingesetzt werden, damit die Immunität gegen Störgeräuschquellen (gemäß EG-Anforderungen) erhalten bleibt.

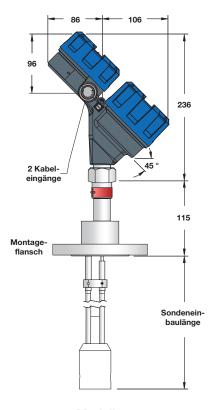

Abschalt-/Überfüllsicherung


Für GWR-Stabsonden sind in Bezug auf Abschalt-/ Überfüllsicherung spezielle Hinweise zu beachten. Stellen Sie für eine korrekte Messung sicher, indem Sie Stabsonden mit Überfüllsicherung verwenden, z.B. die Bezugsgefäßsonden-Modelle 7yG, L oder J, die in einem geeigneten Bezugsgefäß/ Schwallrohr eingesetzt sind.

Montagehinweise für Seilsonden zur Messung von Schüttgütern Das Sondenmodell 7y2 für Schüttgüter ist für eine Zugkraft von 1360 kg ausgelegt und für Anwendungen mit Sand, Kunststoffpellets und Granulaten bestimmt.


- Um übermäßige Belastungen an der Oberseite des Behälters zu reduzieren, darf das Sondengewicht aus Metall nicht am Boden des Behälters fixiert werden.
- Montieren Sie die Sonde mindestens 300 mm von der Wand entfernt. Der ideale Ort entspricht einem ¹₄ bis zur ¹₂ des Durchmessers des durchschnittlichen Schüttwinkels.

m m



GWR-Doppelseilsonde, Draufsicht

Modell 7y5 mit Flanschanschluss

Modell 7y7 mit Flanschanschluss

DOPPELSEILSONDE FÜR EINSATZ IM TANKINNEREN

MONTAGEHINWEISE

Für Modelle 7y7

1. Turbulenzen

Das untere Ende der Doppelseilonde kann an der Unterseite des Behälters fixiert werden. Hierzu das TFE-Gewicht am unteren Sondenende verwenden. Das TFE-Gewicht hat eine Öffnung von 13 mm , die dazu verwendet werden kann, die Sonde an der Unterseite des Behälters zu befestigen.

Ein Kontakt der Sonde mit Metall sollte ebenfalls vermieden werden.

2. Stutzen

Die Leistung einer Doppelseilsonde im Stutzen kann verbessert werden, wenn Folgendes gewährleistet ist:

- Stutzen muss mindestens 3" (DN80) lichte Weite haben.
- Stutzen sollte so kurz wie möglich sein.

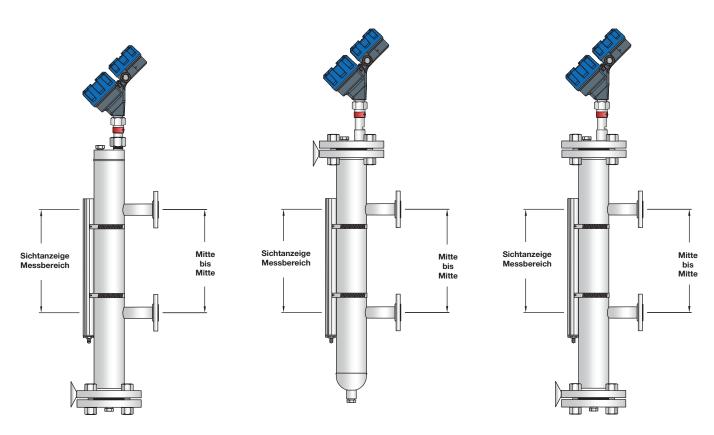
3. Metallische (leitende) Einbauten in Behältern

Montieren Sie die Doppelseilsonde in einem Abstand von mehr als 25 mm zu Metallobjekten oder zur Behälterwand.

Montagehinweise für Doppelseilsonden des Modells 7y5 zur Messung von Schüttgütern:

Das Sondenmodell 7y5 für Schüttgüter ist für eine Zugkraft von 1360 kg ausgelegt und für Anwendungen mit Sand, Kunststoffpellets und Granulaten bestimmt.

- Um übermäßige Belastungen an der Oberseite des Behälters zu reduzieren, darf das Sondengewicht aus Metall nicht am Boden des Behälters fixiert werden.
- Montieren Sie die Sonde mindestens 300 mm von der Wand entfernt. Der ideale Ort entspricht einem ¹/₄ bis zur ¹/₂ des Durchmessers des durchschnittlichen Schüttwinkels.


AURORA® BEZUGSGEFÄSS

Aurora® von Orion Instruments® ist die patentierte Kombination aus ECLIPSE GWR-Messumformer (Guided Wave Radar) und Magnetklappenfüllstandanzeiger (Magnetic Level Indicator; MLI). Die Verschmelzung dieser beiden unabhängigen Technologien liefert eine herausragende Messredundanz. Ein kundenspezifischer Schwimmer im Inneren des AURORA Bezugsgefäßes bewegt sich mit dem sich ändernden Füllstand nach oben und unten. Der Schwimmer ist mit einer internen Gruppe von Magneten versehen, die an die Magneten in den Magnetklappen der Sichtanzeige "gekoppelt" sind, die an der Außenseite des Bezugsgefäßes montiert ist. Da sich der Schwimmer bewegt, drehen sich die Magnetklappen, so dass sie die Farbe ihrer gegenüberliegenden Seite zeigen. Die Position, an der sich die Farbe der Magnetklappen ändert, entspricht einem Punkt auf der Messskala, der den tatsächlichen Füllstand anzeigt. Neben dieser externen, vom Schwimmer im Inneren von AURORA gesteuerten Sichtanzeige, reflektiert der ECLIPSE Messumformer des Modells 706 elektromagnetische Radarimpulse direkt von der Oberfläche der Flüssigkeit, so dass der Füllstand kontinuierlich in Echtzeit ausgegeben wird.

Weitere Angaben zu den AURORA Bezugsgefäßen sowie Informationen zu Zusatzoptionen können Sie der Technischen Information BE 57-138 von Magnetrol® entnehmen. Unabhängig davon, ob ein Standard-Bezugsgefäß oder ein AURORA Bezugsgefäß verwendet wird, sollte Folgendes berücksichtigt werden:

- Achten Sie darauf, dass die Sonde des Modells 706 mindestens 100 mm (4") über den unteren Prozessanschluss des Bezugsgefäßes hervorsteht
- Verwenden Sie Sonden mit Überfüllsicherung, um eine optimale GWR-Leistung zu erzielen.

QUALITÄTSGARANTIE - DIN/ISO 9001

DAS BEI MAGNETROL EINGEFÜHRTE QUALITÄTSSICHERUNGSSYSTEM GARANTIERT HÖCHSTE QUALITÄT BEI ENTWICKLUNG, HERSTELLUNG UND BETRIEB DER GERÄTE.
UNSER QUALITÄTSSICHERUNGSSYSTEM IST NACH ISO 9001 GEPRÜFT UND ZERTIFIZIERT. DAS GESAMTE UNTERNEHMEN VER-

UNSER QUALITÄTSSICHERUNGSSYSTEM IST NACH **ISO 9001** GEPRÜFT UND ZERTIFIZIERT. DAS GESAMTE UNTERNEHMEN VEF PFLICHTET SICH, SEINE KUNDEN DURCH DIE QUALITÄT DER ERZEUGNISSE UND SEINER SERVICELEISTUNGEN ZU ÜBERZEUGEN.

PRODUKTGARANTIE

FÜR ALLE ELEKTRONISCHEN UND ULTRASCHALL-FÜLLSTANDMESSGERÄTE VON MAGNETROL GILT EINE GARANTIE VON 18 MONATE AB DEM ERSTEN VERKAUFSDATUM FÜR MATERIAL. UND VERARBEITUNGSFEHLER. FALLS EIN GERÄT INNERHALB DER GARANTIEFRIST ZURÜCKGESANDT UND DER GRUND DES KUNDENANSPRUCHS DURCH DIE WERKSINSPEKTION ALS GARANTIEFALL ANERKANNT WIRD, WIRD MAGNETROL INTERNATIONAL DAS GERÄT, ABGESEHEN VON DEN TRANSPORTKOSTEN, KOSTENLOS FÜR DEN ANWENDER (EIGENTÜMER) INSTANDSETZEN ODER ERSETZEN.

MAGNETROL IST NICHT HAFTBAR FÜR UNSACHGEMÄSSE ANWENDUNG, ARBEITSANSPRÜCHE, DIREKTE ODER INDIREKTE SCHÄDEN ODER KOSTEN, DIE SICH AUS DEM EINBAU ODER DEM EINSATZ DER GERÄTE ERGEBEN. ES BESTEHEN KEINE WEITEREN AUSDRÜCKLICHEN ODER STILLSCHWEIGENDEN GARANTIEN, AUSSER SPEZIELLEN SCHRIFTLICHEN GARANTIEN FÜR EINIGE MAGNETROL-ERZEUGNISSE.

UNDER RESERVE OF MODIFICATIONS

DNV-GL

ISO 9001

TECHNISCHE INFORMATION: GÜLTIG AB: ERSETZT VERSION VOM:

GE 57-106.9 NOBVEMBER 2019 Oktober 2019

Europazentrale & Produktionsstandort

Heikensstraat 6 9240 Zele, Belgium

Tel: +32-(0)52-45.11.11 • Fax: +32-(0)52-45.09.93

e-mail: info@magnetrol.be

www.magnetrol.com

