E-Spy Dust Monitors - monitor your electrostatic precipitator # Manage your dust removal process - Reduce plant operating expenses - Enhanced filtration system management - Automatic set-up procedure ### E-Spy E-Spy is a revolutionary process monitor that helps optimize the performance of an ESP using state-of-the art probe based technology. Recently developed by our engineers and valuated by research institutes here in Finland, our monitors continuously track the particulate measurements downstream from the ESP enabling plants to not only adhere to the strictest emission regulations, but also reduce overall energy costs. With hundreds of installations worldwide, this has become our fastest growing process control device since it both outperforms and is much more cost effective than the alternative optical monitors. Hundreds of E-Spy have now been installed, and customers are proving to be very satisfied. An increasing number of dust monitors are now being replaced by the Sintrol E-Spy because it is inexpensive, easy to install and commission, requires hardly any maintenance and gives a reliable measurement signal The ESP operator can adjust the parameters to minimize the ESP maintenance requirements, operating costs and the expenses from dust emissions, while meeting all regulatory requirements. ### **Problems Solved** Since the purpose of using an ESP is to remove particulate matter from the gas passing through it, the only way to gain an understanding of its function is to obtain information on the efficiecy of the dust removal. This data is needed both for making adjustments to the ESP controler, as well as for reporting the emission levels to the authorities. By optimizing the operating parameters, costs can be minimized while still complying with pollution regulations. However, obtaining an accurate dust concentration measurement after using an electrostatic precipitator was considered to be problematic. Optical dust monitors (opacity meters) are expensive to purchase and install, require expensive maintenance, yet the measurement results are still unreliable. While optical dust monitors have been the traditional way of measuring dust concentrations immediately after an electrostatic precipitator, they have proven to have several disadvantages: - High investment / installation costs - Labor intensive and expensive maintenance - They need clean, dry air to function - Vibration causes fractures and misalignment of the optics - The availability of accurate measurement data is poor due to fractures, resulting in nonoptimized and costly operation of the ESP ### E-Spy: The Revolutionary Alternative E-Spy brings an alternative ESP control solution to the previous high cost / high maintenance options. By using this new dust monitor, the operator can: - Constantly optimize the operating parameters of the ESP; no measurement down time - Judge the performance of the ESP based on output signal; identify maintenance needs - Simplify the optimization of the rapping system; decrease energy costs and emissions - Save on operating costs ESPs can be run with the lowest possible energy consumption while still complying with authority requirements ### **Industrial Applications** - Power/electricity generation - Cement industry - Chemicals industry - Metals industry - Paper industry ## **Technical Specifications** Faraday Cage (wetted part) Probe Sealing (wetted part) Enclosure Weight Probe Insulation (wetted part) | Measurement Objects | Solid particles in a gas flow | |-------------------------------------|--| | Particle Size | 0.3 µm or larger | | Measurement Range | From 0.1 mg/m³ | | Measurement Principle | Inductive Electrification | | Protection Category | IP65 | | Probe Length (total/measuring) | 500mm / 440mm, 1000mm / 940mm, 1500mm / 1440mm
19.7" / 17.3", 39.4" / 37.0", 59.1" / 56.7" | | Power Supply | 115 VAC, 230 VAC or 24 VDC | | Power Consumption | DC model Max 3 W, AC model Max 8 W | | Wiring Connections - Power Supply | DIN PG11 cable gland | | Wiring Connections - Output Signals | DIN PG11 cable gland | | Process Connection | Flange (DN80), other flange types on request | | Output Signals | Isolated 4 20 mATwo SPDT relays: 5 A, 24 V AC / DCSerial communication, (RS-485) | | Communication Type | Modbus RTU | | Range Set Up | Normal measuring range: automatic, based on average measured dust flow
during setup procedure Manual measuring range: User selectable | | Relay Alarm Settings | Automatic, set at factory: Based on average measured dust flowUser selectable ranges | | Offset trim | Automatic drift compensation | | Damping Time | 10 300 s | | Dun and Constitutions | | | Process Conditions | May 250 °C May 2250 °C an vary last 1. May 402 °F May 2402 °F an vary last | | Temperature Pressure | Max 250 °C, Max >250 °C on request I Max 482 °F, Max >482 °F on request | | | Max 300 kPa, Max 600 kPa (optional) I Max 43.5 PSI, Max 87.0 PSI (optional) Min 4 m/s I Min 13.1 ft/s | | Gas Velocity | · | | Humidity | Max 95 % RH (non-condensing) | | Ambient Conditions | | | Temperature | -20 +45 °C and 60 °C for 24 VDC 1 -4 +113 °F and 140 °F for 24 VDC | | Humidity | Max 95 % RH (non-condensing) | | Vibration | Max 5 m/s ² ı Max 16,4 ft/s ² | | | | | Materials and Weight | | | Probe (wetted part) | Stainless steel (AISI 316L) | | Probe Coating (wetted part) | PTFE Teflon (optional) | | Process Connection (wetted part) | Stainless steel (AISI 316L) | | | | Stainless steel (AISI 316L) PEEK FPM Viton Aluminum alloy 6.8 kg I 15.0 lb # **Principle of Operation** Sintrol dust monitors are based on a unique Inductive Electrification technology. The measurement is based on particles interacting with an isolated probe mounted into the duct or stack. When moving particles pass nearby or hit the probe a signal is induced. This signal is then processed through a series of Sintrol's advanced algorithms to filter out the noise and provide the most accurate dust measurement output. ### **Sintrol** Ruosilantie 15, FI-00390 Helsinki, FINLAND Tel. +358 9 561 7360 e-mail: info@sintrolproducts.com www.sintrolproducts.com